30 research outputs found

    Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes

    Full text link
    Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4-8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions

    Improved Gene Fusion Detection in Childhood Cancer Diagnostics Using RNA Sequencing

    Get PDF
    PURPOSE: Gene fusions play a significant role in cancer etiology, making their detection crucial for accurate diagnosis, prognosis, and determining therapeutic targets. Current diagnostic methods largely focus on either targeted or low-resolution genome-wide techniques, which may be unable to capture rare events or both fusion partners. We investigate if RNA sequencing can overcome current limitations with traditional diagnostic techniques to identify gene fusion events. METHODS: We first performed RNA sequencing on a validation cohort of 24 samples with a known gene fusion event, after which a prospective pan-pediatric cancer cohort (n = 244) was tested by RNA sequencing in parallel to existing diagnostic procedures. This cohort included hematologic malignancies, tumors of the CNS, solid tumors, and suspected neoplastic samples. All samples were processed in the routine diagnostic workflow and analyzed for gene fusions using standard-of-care methods and RNA sequencing. RESULTS: We identified a clinically relevant gene fusion in 83 of 244 cases in the prospective cohort. Sixty fusions were detected by both routine diagnostic techniques and RNA sequencing, and one fusion was detected only in routine diagnostics, but an additional 24 fusions were detected solely by RNA sequencing. RNA sequencing, therefore, increased the diagnostic yield by 38%-39%. In addition, RNA sequencing identified both gene partners involved in the gene fusion, in contrast to most routine techniques. For two patients, the newly identified fusion by RNA sequencing resulted in treatment with targeted agents. CONCLUSION: We show that RNA sequencing is sufficiently robust for gene fusion detection in routine diagnostics of childhood cancers and can make a difference in treatment decisions

    Laparoskopische Pyloromyotomie - Sicher, schnell, manchmal "tricky"

    No full text

    Signifikanz des endoanalen Ultraschalls aus diagnostischer und therapeutischer Sicht

    No full text

    Look Twice Before You Clamp the Cord: Iatrogenic Ileal Transection

    No full text

    X-exome sequencing identifies a HDAC8 variant in a large pedigree with X-linked intellectual disability, truncal obesity, gynaecomastia, hypogonadism and unusual face

    No full text
    BACKGROUND: We present a large Dutch family with seven males affected by a novel syndrome of X-linked intellectual disability, hypogonadism, gynaecomastia, truncal obesity, short stature and recognisable craniofacial manifestations resembling but not identical to Wilson-Turner syndrome. Seven female relatives show a much milder expression of the phenotype. METHODS AND RESULTS: We performed X chromosome exome (X-exome) sequencing in five individuals from this family and identified a novel intronic variant in the histone deacetylase 8 gene (HDAC8), c.164+5G>A, which disturbs the normal splicing of exon 2 resulting in exon skipping, and introduces a premature stop at the beginning of the histone deacetylase catalytic domain. The identified variant completely segregates in this family and was absent in 96 Dutch controls and available databases. Affected female carriers showed a notably skewed X-inactivation pattern in lymphocytes in which the mutated X-chromosome was completely inactivated. CONCLUSIONS: HDAC8 is a member of the protein family of histone deacetylases that play a major role in epigenetic gene silencing during development. HDAC8 specifically controls the patterning of the skull with the mouse HDAC8 knock-out showing craniofacial deformities of the skull. The present family provides the first evidence for involvement of HDAC8 in a syndromic form of intellectual disability

    Mutations in GRIP1 cause Fraser syndrome

    No full text
    Background Fraser syndrome (FS) is a autosomal recessive malformation syndrome characterised by cryptophthalmos, syndactyly and urogenital defects. FS is a genetically heterogeneous condition. Thus far, mutations in FRAS1 and FREM2 have been identified as cause of FS. Both FRAS1 and FREM2 encode extracellular matrix proteins that are essential for the adhesion between epidermal basement membrane and the underlying dermal connective tissues during embryonic development. Mutations in murine Grip1, which encodes a scaffolding protein that interacts with Fras1/Frem proteins, result in FS-like defects in mice. Objective To test GRIP1 for genetic variants in FS families that do not have mutations in FRAS1 and FREM2. Methods and results In three unrelated families with parental consanguinity, GRIP1 mutations were found to segregate with the disease in an autosomal recessive manner (donor splice site mutation NM_021150.3: c.2113+1G -> C in two families and a 4-bp deletion, NM_021150.3: c.1181_1184del in the third). RT-PCR analysis of the GRIP1 mRNA showed that the c.2113+1G -> C splice mutation causes skipping of exon 17, leading to a frame shift and a premature stop of translation. Conclusion Mutations in GRIP1 cause classic FS in human

    Molecular Characterization Reveals Subclasses of 1q Gain in Intermediate Risk Wilms Tumors

    Get PDF
    Chromosomal alterations have recurrently been identified in Wilms tumors (WTs) and some are associated with poor prognosis. Gain of 1q (1q+) is of special interest given its high prevalence and is currently actively studied for its prognostic value. However, the underlying mutational mechanisms and functional effects remain unknown. In a national unbiased cohort of 30 primary WTs, we integrated somatic SNVs, CNs and SVs with expression data and distinguished four clusters characterized by affected biological processes: muscle differentiation, immune system, kidney development and proliferation. Combined genome-wide CN and SV profiles showed that tumors profoundly differ in both their types of 1q+ and genomic stability and can be grouped into WTs with co-occurring 1p−/1q+, multiple chromosomal gains or CN neutral tumors. We identified 1q+ in eight tumors that differ in mutational mechanisms, subsequent rearrangements and genomic contexts. Moreover, 1q+ tumors were present in all four expression clusters reflecting activation of various biological processes, and individual tumors overexpress different genes on 1q. In conclusion, by integrating CNs, SVs and gene expression, we identified subgroups of 1q+ tumors reflecting differences in the functional effect of 1q gain, indicating that expression data is likely needed for further risk stratification of 1q+ WTs
    corecore