615 research outputs found

    Emergence and Reproductive Patterns in the Japanese Beetle, Popillia japonica (Coleoptera: Scarabaeidae)

    Get PDF
    Sex-biased emergence patterns are common in insects resulting in either protandry (males emerging before females) or protogyny (females emerging before males). The Japanese beetle, Popillia japonica Newman, has been shown to exhibit protandry but shows some characteristics of a protogynous species. For example, females mate and oviposit multiple times and this species displays last male sperm advantage. This study investigated the emergence and egg laying patterns of Japanese beetles in east-central Illinois. Although variation existed among study sites none showed protandry and overall they displayed protogyny. Females did not initiate oviposition until several days after emergence and the number of eggs laid remained relatively constant over time. Thus, emergence patterns and reproductive biology suggest Japanese beetles in this population may be protogynous

    Emergence and Reproductive Patterns in the Japanese Beetle, Popillia japonica (Coleoptera: Scarabaeidae)

    Get PDF
    Sex-biased emergence patterns are common in insects resulting in either protandry (males emerging before females) or protogyny (females emerging before males). The Japanese beetle, Popillia japonica Newman, has been shown to exhibit protandry but shows some characteristics of a protogynous species. For example, females mate and oviposit multiple times and this species displays last male sperm advantage. This study investigated the emergence and egg laying patterns of Japanese beetles in east-central Illinois. Although variation existed among study sites none showed protandry and overall they displayed protogyny. Females did not initiate oviposition until several days after emergence and the number of eggs laid remained relatively constant over time. Thus, emergence patterns and reproductive biology suggest Japanese beetles in this population may be protogynous

    A Quantitative Morphological Method for Mapping Local Climate Types

    Get PDF
    Morphological characteristics of cities significantly influence urban heat island intensities and thermal responses to heat waves. Form attributes such as density, compactness, and vegetation cover are commonly used to analyse the impact of urban morphology on overheating processes. However, the use of abstract large-scale classifications hinders a full understanding of the thermal trade-off between single buildings and their immediate surrounding microclimate. Without analytical tools able to capture the complexity of cities with a high resolution, the microspatial dimension of urban climate phenomena cannot be properly addressed. Therefore, this study develops a new method for numerical identification of types, based on geometrical characteristics of buildings and climate-related form attributes of their surroundings in a 25m and 50m radius. The method, applied to the city of Rotterdam, combines quantitative descriptors of urban form, mapping GIS procedures, and clustering techniques. The resulting typo-morphological classification is assessed by modelling temperature, wind, and humidity during a hot summer period, in ENVI-met. Significant correlations are found between the morphotypes’ characteristics and local climate phenomena, highlighting the differences in performative potential between the classified urban patterns. The study suggests that the method can be used to provide insight into the systemic relations between buildings, their context, and the risk of overheating in different urban settings. Finally, the study highlights the relevance of advanced mapping and modelling tools to inform spatial planning and mitigation strategies to reduce the risk of urban overheating
    • …
    corecore