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ABSTRACT
Gambling disorder (GD) is characterized by an inability to stop or 
control gambling behaviour and is often accompanied by gambling-
related cognitive distortions. Task-based functional Magnetic 
Resonance Imaging (fMRI) studies have revealed abnormal responses 
within the prefrontal and insular cortex, and mesolimbic reward 
regions. Studies examining resting-state functional connectivity 
in GD, although limited in number, have so far applied seed-based 
analysis approaches which revealed altered brain functioning. 
Here, we applied data-driven Independent Components Analysis 
to resting-state multi-echo fMRI data. Networks of interest were 
selected by spatially correlating them to independently derived 
network templates. Using dual regression, we compared connectivity 
strength between 20 GD patients and 20 healthy controls within 4 
well-known networks (the ventral attention, limbic, frontoparietal 
control, and default mode network) and an additional basal ganglia 
component. Compared to controls, GD patients showed increased 
integration of the right middle insula within the ventral attention 
network, an area suggested to play an important role in addiction-
related drive. Moreover, our findings indicate that gambling-related 
cognitive distortions – a hallmark of GD – were positively related to 
stronger integration of the amygdala, medial prefrontal cortex and 
insula within various resting-state networks.

Introduction

Gambling disorder (GD) is a behavioural addiction characterized by an inability to stop or 
control gambling behaviour and is often accompanied by gambling-related cognitive distor-
tions; that is, false beliefs about skill and chance in gambling games. Neuroimaging studies 
in GD have revealed abnormalities in a wide range of cognitive functions (van Timmeren, 
Daams, van Holst, & Goudriaan, 2018) and associated brain responses (van Holst, van den 
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Brink, Veltman, & Goudriaan, 2010). Most studies have focused on decision-making in 
GD, showing consistent disadvantageous risky decision-making in GD, accompanied by 
abnormal responses within prefrontal control regions, mesolimbic reward regions and the 
insula (Fauth-Bühler, Mann, & Potenza, 2017; Limbrick-Oldfield et al., 2017). However, 
such task-related functional Magnetic Resonance Imaging (fMRI) studies could be con-
founded by the fact that many decision-making tasks resemble gambling games, which are 
experienced differently by gamblers compared to healthy control subjects (HCs). Elicited 
brain responses could therefore be related to, for example, experience or motivation, rather 
than dysfunction. A more unbiased and practical approach to study brain activity in GD is 
to study ‘spontaneous’ fluctuations of the brain during rest. Such resting-state fMRI studies 
assess functional connectivity within and between circuits and systems, based on the tem-
poral correlation of the blood oxygenation level-dependent (BOLD) signal.

Various approaches to analysing resting-state fMRI data exist, but the two most frequently 
used in the literature are seed-based connectivity and spatial Independent Component 
Analysis (ICA) methods. Seed-based connectivity analysis is a spatially model-driven 
approach, in which the BOLD time course of one predefined seed region is temporally 
correlated with the BOLD time courses of all other voxels in the brain (Joel, Caffo, Van Zijl, 
& Pekar, 2011). ICA-based approaches, on the other hand, decompose whole brain responses 
into components that are statistically maximally independent (Beckmann, DeLuca, Devlin, 
& Smith, 2005; Fox & Raichle, 2007) and offer a data-driven approach to detect resting-state 
networks. Thus, while seed-based methods strongly rely on a priori assumptions regarding 
the selected regions of interest, ICA is a model-free and multivariate method (Fox & Raichle, 
2007). This switches the focus from evaluating the functional connectivity of single brain 
regions to evaluating brain connectivity in terms of all networks that are simultaneously 
engaged in oscillatory activity (Nickerson, Smith, Öngür, & Beckmann, 2017).

Studies examining resting-state functional connectivity in GD have so far been scarce, 
but have mostly relied on seed-based methods. In one of the first resting-state studies in 
GD, higher functional connectivity between the right middle frontal gyrus and the right 
striatum was observed in GD patients compared to controls using a seed-based approach 
(Koehler et al., 2013). Another seed-based connectivity study found that, when compared 
to controls, cocaine dependent patients and GD patients showed overlapping increases in 
local connectivity within the orbitofrontal cortex and amygdala, between the orbitofrontal 
cortex and the dorsomedial prefrontal cortex and striatum, and between the amygdala and 
insula (Contreras-Rodríguez et al., 2016). This study also revealed that cocaine depend-
ent patients and GD patients displayed decreased connectivity between the amygdala and 
cerebellum. Besides increases of connectivity within the (meso)limbic and frontostriatal 
circuit, GD has been associated with decreased default mode network connectivity in the 
left superior frontal gyrus, right middle temporal gyrus, and precuneus (Jung et al., 2014). 
Moreover, Tschernegg et al. (2013) used a graph-theoretical approach to examine fronto-
striatal functional connectivity and observed increased functional connectivity between 
the caudate nucleus and anterior cingulate in GD patients compared to controls. To sum 
up, three out of four resting-state studies in GD have used seed-based methods and have 
generally revealed connectivity differences in GD patients, mostly in regions implicated in 
reward processing and cognitive control.

We here applied a group-ICA in combination with dual regression to assess the intrinsic 
functional connectivity in networks potentially implicated in GD. To further optimize our 
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data-driven approach, we used functional connectivity networks derived from an independ-
ent group of 1000 healthy individuals (Yeo et al., 2011) as templates to select our resting-state 
networks of interest. Based on the previous seed-based findings described above, we focus 
on four well-known networks (Figure 1): (i) the ventral attention network, also referred 
to as the salience (Seeley et al., 2007) or cingulo-opercular network (Dosenbach et al., 
2007), which is thought to modulate attention to internal and external stimuli and includes 
regions such as the amygdala, insula, inferior frontal gyrus and the pregenual cingulate; 
(ii) the limbic network, which is involved in processing emotions, including the amygdala, 
hippocampus and temporal cortices; (iii) the frontoparietal control network (Dosenbach  
et al., 2007; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008), implicated in adaptive control 
over behaviour and associated with the dorsolateral prefrontal cortex, premotor cortex and 
parietal cortex; and (iv) the default mode network, which characterizes the resting state of 
the human brain and primarily comprises the anterolateral temporal cortex, parahippocam-
pal gyrus, thalamus, pons and cerebellum, as well as part of the medial prefrontal cortex 
and the posterior cingulate cortex (Buckner, Andrews-Hanna, & Schacter, 2008; Greicius, 
Krasnow, Reiss, & Menon, 2003). While most previous resting-state studies in GD have 
focused on connectivity with the mesolimbic reward circuitry (e.g. Contreras-Rodríguez 
et al., 2016; Koehler et al., 2013), the networks that were selected using the templates from 
Yeo et al (2011) did not cover mesolimbic areas. Therefore, we additionally included a 
network encompassing the basal ganglia, which was derived from our ICA. We examined 
differences in connectivity strength within these identified resting-state networks between 
20 GD patients and 20 HCs. Moreover, because we were interested to test whether individual 
variation in the strength of specific resting-state networks was related to gambling severity 
and gambling cognitive distortions, we also tested this within the GD group.

Materials and methods

Participants

A total of 21 individuals diagnosed with GD (17 males) were recruited from a local addiction 
treatment centre (Jellinek, Amsterdam), and 20 HCs (17 males) were recruited through 
advertisements. All data were collected between December 2015 and May 2017. The ethi-
cal review board of the Academic Medical Centre approved the study, and all participants 
provided written informed consent.

Patients with GD were included if they were diagnosed with, and started therapy for, 
GD (at least one and on average 19.6 weeks prior to participation). Patients were abstinent 
for an average of 6 weeks (range 0–26 weeks). All subjects underwent a structured psychi-
atric interview (Mini-International Neuropsychiatric Interview–Plus; Sheehan, Lecrubier, 
& Sheehan, 1998), which further confirmed criteria for DSM-5 Gambling Disorder in the 
GD group, or the lack thereof in HCs. Exclusion criteria for all subjects included: lifetime 
history of bipolar disorder, anxiety disorder, obsessive-compulsive disorder or schizophre-
nia; past six-month history of major depressive episode; current or past-year substance 
use disorder; current psychiatric treatment (except for GD in GD patients); the use of any 
psychotropic medication; positive urine screen for (meth)amphetamines, benzodiazepines, 
opioids, cocaine, ecstasy, PCP, methadone or cannabis; history or current treatment for 
neurological disorders; major physical disorders; brain trauma; exposure to neurotoxic 
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factors; or any contraindications for MRI. One patient tested positive on THC use, but 
informed us that the subject used marijuana once, seven days prior to participation. Because 
our inclusion criteria allowed drug use until 72 hours prior to inclusion, this subject was 
included for further analyses.

All participants completed the Fagerstrom Test for Nicotine Dependence (FTND; 
Heatherton, Kozlowski, Frecker, & Fagerström, 1991) and the Alcohol Use Disorders 
Identification Test (AUDIT; Saunders, Aasland, Babor, de la Fuente, & Grant, 1993). 
Furthermore, in GD patients, the experience of gambling-related problems was assessed 
using the past-12-month Problem Gambling Severity Index (PGSI; Ferris & Wynne, 2001) 
and the Gamblers’ Beliefs Questionnaire (GBQ; Steenbergh, Meyers, May, & Whelan, 2002). 
The GBQ contains 21 items (e.g. ‘My choices or actions affect the game on which I am 
betting’ or ‘I am pretty accurate at predicting when a “win” will occur’), with higher scores 
reflecting more gambling-related distortions.

One male subject was excluded due to excessive head motion (>5 mm movement in 
any direction relative to the first volume) during the fMRI session, resulting in a total of 
20 GDs and 20 HCs for further analysis. The groups significantly differed on gross motion  
(p = 0.012) as calculated by mean relative framewise displacement (FD) (Jenkinson, 
Bannister, Brady, & Smith, 2002), with GDs showing higher motion (mean = 0.187,  
SD = 0.162, range 0.047–0.682) than HCs (mean = 0.094, SD = 0.042, range 0.039–0.211). 
We additionally report analyses excluding two GD subjects with FD > 0.55 mm (following 
criteria similar to Satterthwaite et al., 2013), which rendered the group differences on FD 
non-significant (p = 0.62; GD-group: mean = 0.1347, SD = 0.67, range 0.047–0.301).

Procedure

Participants were in the scanner in supine position and were instructed to relax and keep 
their eyes open while attending to a centrally presented white fixation cross on a black pro-
jection screen for ~8 minutes. These data were collected as part of a larger study protocol 
including questionnaires, neuropsychological testing and multiple fMRI tasks, data of which 
will be presented elsewhere. The fMRI tasks, which included a combined cue reactivity/
monetary incentive delay task, were performed prior to the resting-state scan.

Magnetic Resonance Imaging

MRI measurements were acquired using a 3-Tesla (T), full-body Philips Intera MRI scanner 
equipped with a 32-channel phased array SENSE radiofrequency (RF) receiver head coil. 
For resting-state data acquisition, we used a multi-echo planar sequence for its improved 
blood oxygenation level-dependent (BOLD) sensitivity and lower susceptibility for artifacts, 
especially for ventral regions (Poser, Versluis, Hoogduin, & Norris, 2006). A total of 200 
BOLD scans were acquired using a T2*-weighted gradient multi-echo echoplanar imaging 
(EPI) sequence (Poser et al., 2006) with the following parameters: repetition time (TR) = 
2375 ms; echo time (TE) = 9 / 26.4 / 43.8 ms; flip angle = 76°; field of view (FOV) = 224 x 
121.8 x 224 mm; voxel size = 3 x 2.95 x 3 mm; matrix size = 76 x 73; slice thickness = 3 mm; 
slice gap = 0.3 mm; number of slices = 37, acquired in interleaved order. The first three 
scans were discarded to allow T1 saturation to reach equilibrium.
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Additionally, we acquired a high resolution T1-weighted anatomical image (voxel size = 1 
x 1 x 1 mm; FOV = 236.679 x 180 x 256 mm; TR = 6.862 ms; TE = 3.14 ms, 150 slices, slice 
thickness = 1.2 mm, sampling matrix = 212 x 212 x 150, flip angle = 8°).

Statistical analyses

Demographics and clinical data were analysed for group differences with two-sampled 
t-tests and Pearson’s chi-square tests using SPSS 22.0 (IBM Corporation).

Preprocessing

Raw multi-echo fMRI data were first processed according to Poser et al. (2006). Realignment 
parameters were estimated for the images acquired at the first echo time and consequently 
applied to images resulting from the three other echoes using SPM12 software (Wellcome 
Trust Centre for Neuroimaging, London). This is compliant with recent work that suggests 
that motion is more appropriately controlled if realignment parameters are estimated before 
any interpolation is done on the data (Power, Plitt, Kundu, Bandettini, & Martin, 2017). 
Thirty volumes, acquired independently from the resting-state scan, were used to calculate 
the optimal weighting of echo times for each voxel by applying a PAID-weight algorithm 
(Poser et al., 2006). These weightings were then used to combine multi-echo fMRI data 
into single volumes.

All further processing of MRI data was performed in FSL 5.09 (FMRIB’s Software Library, 
www.fmrib.ox.ac.uk/fsl). Preprocessing was carried out using FEAT (FMRI Expert Analysis 
Tool) Version 6.00. The following pre-statistics processing was applied; non-brain removal 
using BET (Smith, 2002); spatial smoothing using a Gaussian kernel of FWHM 6.0 mm; 
grand-mean intensity normalization of the entire 4D data-set by a single multiplicative fac-
tor. Registration of functional data to the high resolution structural image was carried out 
using the boundary based registration (BBR) algorithm (Greve & Fischl, 2009). Registration 
of the high resolution structural image to standard space was carried out using FLIRT 
(Jenkinson & Smith, 2001; Jenkinson et al., 2002) and was further refined using FNIRT 
nonlinear registration (Andersson, Jenkinson, & Smith, 2007a,b). Tissue segmentation was 
performed using FAST (Zhang, Brady, & Smith, 2001).

Because resting-state functional MRI is especially sensitive to motion artifacts (e.g. Power, 
Barnes, Snyder, Schlaggar, & Petersen, 2012), we used ICA-AROMA (Pruim et al., 2015b) 
to remove motion-related artifacts from the individual resting-state data. Previous studies 
have shown that cleaning based on single-subject ICA significantly increases reproducibility 
(Pruim, Mennes, Buitelaar, & Beckmann, 2015a). We followed the methods as described by 
Pruim et al. (2015b): first, ICA was used to decompose the data into a set of independent 
components. Next, the components that were related to head motion were identified by the 
AROMA algorithm and regressed out from the data. Additionally, compliant with Pruim  
et al. (2015b), residual (non-motion related) structured noise was regressed out by using 
mean white matter and cerebrospinal fluid signal as nuisance regressors. Masks were 
obtained using FAST’s binary segmentations and eroded once. Recent work by Power, 
Plitt, Laumann, and Martin (2017) demonstrated that the correlation of those signals with 
grey matter can be high without extensive erosion, which was indeed the case (r = 0.80 for 
white matter; 0.55 for cerebrospinal fluid). It is important to note that by using these highly 
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Figure 1. Reference networks (Yeo et al., 2011) are well matched to resting-state networks used in the 
current study. The reference network is plotted on the left in red, while individual ICs (significantly 
overlapping with that reference network) are plotted in contrasting colours within a single image on the 
right. All overlays are thresholded at 3 < z < 6.
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correlated masks as nuisance regressors, we are effectively applying global signal regres-
sion; a highly debated processing step which has benefits but can also lead to ‘artefactual’ 
anti-correlations (for a recent review, see Murphy & Fox, 2017). After high-pass filtering, 
the denoised data was then resampled into MNI space in 4 mm.

Independent component analysis

After preprocessing, the temporally concatenated resting-state data of all subjects were 
analysed using group-ICA (Beckmann & Smith, 2004) as implemented in FSL’s MELODIC 
(3.14). The number of dimensions was estimated using the Laplace approximation to the 
Bayesian evidence of the model order (Beckmann & Smith, 2004; Minka, 2001) and yielded 
51 components. These group components reflect a variety of structured signals that can 
exist simultaneously in the data: some are of interest (e.g. patterns of intrinsic functional 
connectivity) and others are noise (e.g. head motion and physiological noise). Identifying 
which components are of interest is usually done ‘subjectively’ by an expert. A more objec-
tive approach would be to statistically compare each component with a set of reference 
networks. Following Reineberg, Andrews-Hanna, Depue, Friedman, and Banich (2015), 
we thus compared all 51 components with a set of online available reference networks from 
a previous study analysing resting-state data of ~1000 participants (Yeo et al., 2011). This 
study parcellated the cerebral cortex’s connectivity into seven robust networks. Because 
we did not expect connectivity differences within all of those seven networks, we a priori 
selected the four following networks to compare to our components: the ventral attention, 
limbic, frontoparietal and default mode network. Pearson’s r was calculated for each pairwise 
relationship using FSL’s ‘fslcc’ tool. Only those components that yielded a significant spatial 
correlation (Pearson’s r > .263) with one of the four selected Yeo networks were selected 
for further analysis. However, the networks described by Yeo et al. (2011) cover mainly the 
cerebral cortex. Based on the previous GD resting-state literature (Contreras-Rodríguez 
et al., 2016; Jung et al., 2014; Koehler et al., 2013), we also wanted to include a component 
covering the basal ganglia. This component was therefore manually selected for analysis 
(see Figure 2), resulting in a total of five networks of interest.

Figure 2.  Basal ganglia network. This network was manually selected based on previous literature. 
Thresholded at 3 < z < 6.
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Dual regression

To compare resting-state network activity between GD patients and HCs, and to identify 
how network activity varies with gambling severity (PGSI-scores) and the severity of gam-
bling-related distortions (GBQ-scores) within the GD patients, dual regression was used 
(Beckmann, Mackay, Filippini, & Smith, 2009; Filippini et al., 2009). Using this approach, 
the set of spatial maps from the group-ICA were used to generate subject-specific versions 
of the spatial maps, and associated time series. These subject-specific time-courses were 
normalized to allow testing for shape and amplitude effects (Nickerson et al., 2017). The spa-
tial maps were tested voxel-wise for statistically significant differences between the groups 
and correlations with gambling severity and gambling beliefs using dual regression’s default 
settings and FSL randomise nonparametric permutation testing with 5000 permutations, 
using a threshold-free cluster enhanced (TFCE) technique to control for multiple compari-
sons (Nichols & Holmes, 2001). A Bonferroni correction (two-tailed) for tests over the five 
networks was applied to reduce the likelihood of committing a Type 1 error, resulting in a 
reported significance threshold of p < 0.005 (= 0.05 / (2 directions * 5 networks)). For the 
significant clusters, MNI coordinates are reported.

Results

Groups were matched on gender, age, handedness and alcohol use (Table 1). Compared to 
HCs, the number of education years was significantly lower in GD patients. Moreover, there 
were significantly more tobacco smoking GD patients than HCs, although the severity of 
nicotine dependence was similar across groups within smoking subjects.

Independent component analysis

A total of 11 ICA components significantly correlated with a reference network: 3 with the 
ventral attention network, 1 with the limbic network, 3 with the frontoparietal network 
and 4 with the default mode network. Figure 1 shows the four template networks of Yeo  
et al. (2011) next to the combined individual components (ICs). Individual plots of the ICs 
that were obtained using MELODIC for the four reference networks are included in the 
supplement (Supplementary Figures 1–4). Additionally, we included a manually selected 

Table 1. Demographics.

GDs: Gambling Disordered patients; HCs: Healthy Controls; SD: Standard Deviation; FTND: Fagerstrom test for nicotine 
dependence; AUDIT: Alcohol Use Disorders Identification Test; GBQ: Gamblers’ Beliefs Questionnaire; PGSI: Problem 
Gambling Severity Index.

ap value of chi-square test.
bp value of two-sampled t-test.

GDs (n = 20)
Mean (SD)

HCs (n = 20)
Mean (SD) p value

Gender (male/female) 16/4 17/3 0.68a

Handedness (right/left) 19/1 17/3 0.29a

Age, years 33.8 (12.8) 38.3 (9.5) 0.22b

Education, years 7.8 (2.7) 9.8 (3.0) 0.03b

Smokers 10 3 0.02a

 FTND in smokers 5.6 (1.7) 4.7 (.57) 0.39b

AUDIT 4.5 (4.0) 3.4 (2.4) 0.30b

GBQ 72.1 (24.8) – –
PGSI (12 months) 15.2 (3.8) – –

INTERNATIONAL GAMBLING STUDIES   249



component covering the basal ganglia in our analysis, which did not correlate to any of the 
reference networks (see Figure 2).

Dual regression

Group differences

Our dual regression analysis indicated that GD patients showed significantly increased 
connectivity in the ventral attention network (IC 39), specifically within the right insula 
(one voxel at x, y, z: 42, 2, –12, p = 0.004, Figure 3). No other significant group differences 
in any of the other networks were observed.

Association with gambling severity

Within the GD group, we did not find significant associations between gambling severity and 
functional connectivity strength in any of the four networks, nor the basal ganglia network.

Association with gambling beliefs

In GD patients, a significant positive association between gambling beliefs and functional 
connectivity strength was found in a number of networks and components (Figure 4). In 
the limbic network (IC33), higher GBQ scores were positively related to increased activity 
in the right temporal lobe, extending towards the amygdala (peak at x, y, z: 34, 2, –40,  
p = 0.004, cluster size = 17 voxels; Figure 4A). Within the frontoparietal network (IC30), 
GBQ score was positively related to bilateral Brodmann area 10 (BA10) (one voxel at x, 
y, z: 15, 63, –4, p = 0.004; Figure 4B). Moreover, within the default mode network (IC10), 

Figure 3. Increased functional connectivity in gambling disordered patients compared to healthy controls 
within the ventral attention network. The independent component representing part of the ventral 
attention network, which was used as input for dual regression, is plotted in gradient from red to yellow 
(3 < z < 6). Comparison of this spatial map between the two groups revealed increased connectivity 
strength in the right insula in gambling disordered patients. For visualization purposes, these results are 
shown in blue, thresholded at p < 0.05 (uncorrected). Results are superimposed on a MNI152 standard 
space template image; orthogonal slices through the peak voxel are shown in radiological convention 
(right = left).
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gambling beliefs were positively related to a cluster encompassing the right insula and 
amygdala (peak at x, y, z: 42, 18, –16, p = 0.003, cluster size = 4 voxels; Figure 4C).

Additional analyses without high-motion subjects

Because motion was significantly higher in the GD patients, we performed additional analy-
ses on a subsample, excluding two high-motion (GD) subjects (mean FD > 0.55 mm). First, 
we investigated the relationship between motion and the ICs by computing the correlation 
between volume-to-volume motion (FD) and the time series outputs of stage 1 of the 
dual-regression. The distribution of the boxplots is centred around zero (Supplementary 
Figure 6), indicating that our initial analyses were relatively free of motion-related artifacts.

Additionally, we repeated the dual regression analyses without the two high-motion 
subjects. This rendered the results of both analyses non-significant at the initial Bonferroni-
corrected threshold. However, the connectivity pattern between the two groups was similar 

Figure 4.  Number of gambling distortions covaries with resting-state networks. Spatial maps of the 
significant dual regression results are plotted over corresponding ICAs (see Figure 2 for details). Results 
in blue show regions that covary with individual GBQ scores. For visualization purposes, these results are 
shown in blue, thresholded at p < 0.05 (uncorrected). Next to these results, scatter plots showing the mean 
functional connectivity value (PE = parameter estimate) extracted from the significant clusters (y-axis) 
are plotted against the GBQ scores for each individual gambling disordered patient.
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to what was previously described, albeit at a lower threshold (Supplementary Figure 5). 
The reported whole-brain correlations with GBQ within the GD group disappeared after 
removal of those subjects. In sum, we interpret the whole-sample group difference as not 
being merely driven by the two high-motion subjects because (i) there was no systematic 
relationship between the level of motion and the selected ICs, and (ii) a similar but weaker 
connectivity pattern was observed after excluding two subjects, which may be due to the 
lower number of subjects leading to decreased power.

Discussion

The present study compared the functional architecture of five resting-state networks in GD 
patients with HCs. We found that, in GD patients, the bilateral insula is more strongly inte-
grated into the ventral attention network, compared to HCs. No significant group differences 
were found in the other connectivity networks that we assessed. Within the GD patients, 
our results indicate positive relationships between the level of gambling distortions and how 
strongly (i) the right temporal lobe and amygdala were integrated into the limbic network; 
(ii) Brodmann area 10 (bilateral) was integrated into the frontoparietal control network and 
(iii) the right insula and amygdala were integrated into the default mode network. These 
findings indicate that increased insular connectivity in GD patients during (non-gam-
bling-related) processing may be attentional, while (gambling-related) insular connectivity 
positively relates with gambling beliefs within the default mode network. Interestingly, any 
insular differences in GD do not appear to be related to frontoparietal control mechanisms.

Our finding of the right insula being more strongly integrated into the ventral attentional 
network in GD patients compared to HCs resonates with previous work highlighting a cru-
cial role for the insula in GD. Previous resting-state studies in GD patients have reported 
increased connectivity of the insula with the right middle frontal gyrus (Koehler et al., 
2013) and the amygdala (Contreras-Rodríguez et al., 2016). Task-based fMRI studies in 
GD patients also demonstrated increased connectivity of the left insula with the bilateral 
ventral striatum during a discounting task (Peters, Miedl, & Büchel, 2013) and increased 
activity in the insula during a cue reactivity task (i.e. watching gambling cues compared to 
neutral cues) which also correlated with between-subject craving scores (Limbrick-Oldfield 
et al., 2017). Because our resting-state block was preceded by a task containing gambling 
pictures, our results may partly reflect a sustained cue reactivity effect; previous work has 
shown that task execution preceding a resting-state scan can affect the functional structure 
of resting-state networks (Grigg & Grady, 2010). More generally, the insula is thought to 
play a critical role in several substance-related addictions and craving (Naqvi, Gaznick, 
Tranel, & Bechara, 2014), with insula damage disrupting nicotine addiction (Naqvi, Rudrauf, 
Damasio, & Bechara, 2007). Hence, the increased connectivity strength we observed in 
GD patients during rest is congruent with accumulating evidence for insula involvement 
in addiction-related states.

Gambling-related cognitive distortions are a key characteristic of GD, predicting gam-
bling severity (Steenbergh et al., 2002) as well as duration of play and treatment outcome 
(Fortune & Goodie, 2012; Goodie & Fortune, 2013). Interestingly, a higher number of 
cognitive distortions about gambling was associated with increased involvement of differ-
ent regions within a number of networks. Higher GBQ-scores were related to significantly 
increased involvement of the temporal lobe (extending towards the amygdala) in the limbic 
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network; the bilateral medial prefrontal cortex (BA 10) in the frontoparietal control net-
work; and the right insula (extending into the amygdala) in the default mode network. 
Although the involvement of these regions was found within different brain networks, all 
are directly anatomically connected: the anterior insula projects to the amygdala, which 
in turn receives from and projects to the bilateral medial prefrontal cortex (Flynn, 1999). 
These areas have been implicated in emotional awareness (Gu, Hof, Friston, & Fan, 2013) 
and incentive learning (Denny et al., 2014; Parkes & Balleine, 2013). There is some work 
directly linking increased insula activity and connectivity to gambling distortions. A typ-
ical cognitive distortion seen in gamblers is the near-miss effect, which occurs when an 
unsuccessful outcome is close to a win, resulting in increased motivation and the illusion 
of control (Clark, 2010). Amplified responses to near-misses have been observed in the 
bilateral anterior insula and striatum in GD patients (Clark, Lawrence, Astley-Jones, & Gray, 
2009; Sescousse et al., 2016), while increased connectivity between the ventral striatum 
and insula during such events was related to gambling severity in regular gamblers (van 
Holst, Chase, & Clark, 2014). The positive relation we found between gambling distortions 
and connectivity strength within the insula is also in line with a lesion study showing that 
damage to the insula abolishes several cognitive distortions about gambling, including the 
near-miss effect (Clark, Studer, Bruss, Tranel, & Bechara, 2014).

Contrary to previous resting-state studies, we did not find evidence for abnormal striatal 
connectivity in GD compared to controls. This inconsistency may be a consequence of meth-
odological differences. Whereas previous studies used seed-based analyses to directly test the 
connectivity from the striatum to other regions, we applied a data-driven ICA approach to 
test for differences in networks (some of which include the striatum; e.g. salience network, 
frontal-partietal control network and self-selected basal ganglia network). It could also be 
argued that using a preselected striatal seed is more sensitive to picking up abnormal striatal 
connectivity, while these abnormalities could remain sub-threshold when using data-driven 
ICA approaches. Moreover, task-based fMRI studies have consistently shown abnormal 
striatal functioning in GD. Perhaps striatal abnormalities are more pronounced in patients 
with GD when they are preforming specific tasks recruiting the striatum than during rest.

These results need to be considered in the context of some limitations. First, the reported 
sample size is relatively small, which renders replication of these results necessary. Second, 
the groups significantly differed in the level of motion. Motion-related artifacts are known to 
influence measures of functional connectivity, specifically of resting-state data (e.g. Power et 
al., 2012). Although benchmarking studies indicate that the denoising techniques deployed 
here, including the use of multi-echo imaging and ICA-AROMA, rank amongst the most 
successful (Ciric et al., 2017; Parkes, Fulcher, Yucel, & Fornito, 2018), it is impossible to 
completely rule out the impact of motion. Excluding two high-motion subjects in addi-
tional analyses rendered the effects non-significant. However, this could also be an issue 
of decreased power for the group comparison, as the increased insular connectivity within 
the ventral attentional was still observed at a lower (p < 0.1) threshold. Last, the number 
of smoking subjects in the GD group was significantly higher than in the HC group. The 
increased insula connectivity within the ventral attention network in the GD group could 
therefore also be driven by smoking status, which would correspond with the critical role 
of the insula in the addiction to smoking (Naqvi et al., 2007).

To our knowledge, this article is the first to investigate resting-state connectivity using an 
ICA approach in GD. Another strength of this study is that we used ICA-AROMA (Pruim  
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et al., 2015b) to remove motion-related artifacts from the individual resting-state data, which 
has been shown to increase reproducibility (Pruim et al., 2015a). Furthermore, we used 
an objective and easily reproducible method to select networks based on an independent 
template describing the cerebral cortex created from more than 1000 subjects. To further 
understand how abnormal resting-state connectivity relates to cognition and behaviour in 
GD, future studies would benefit from including neurocognitive assessments and testing 
for correlations between network integrity and neurocognitive functioning.

In conclusion, in this study we used a data-driven approach to investigate resting-state 
connectivity in GD patients. Compared to controls, GD patients showed increased func-
tional connectivity strength within the right middle insula, which is part of the ventral 
attention network, and is suggested to play an important role in addiction-related drive. 
Moreover, our findings indicated that increased connectivity strength in networks encom-
passing the amygdala, medial prefrontal cortex and insula (areas implicated in emotional 
awareness and incentive learning) may underlie gambling-related cognitive distortions, 
which are a hallmark of GD.
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