8 research outputs found

    Exploring Refractoriness as an Adjunctive Electrical Biomarker for Staging of Atrial Fibrillation

    Get PDF
    Patients diagnosed with the same subtype of atrial fibrillation according to our current classification system may differ in symptom severity, severity of the arrhythmogenic substrate, and response to antiarrhythmic therapy. Hence, there is a need for an electrical biomarker as an indicator of the arrhythmogenic substrate underlying atrial fibrillation enabling patient-tailored therapy. The aim of this review is to investigate whether atrial refractoriness, a well-known electrophysiological parameter that is affected by electrical remodeling, can be used as an electrical biomarker of the arrhythmogenic substrate underlying atrial fibrillation. We discuss methodologies of atrial effective refractory period assessment, identify which changes in refractoriness-related parameters reflect different degrees of electrical remodeling, and explore whether these parameters can be used to predict clinical outcomes

    Conduction Heterogeneity: Impact of Underlying Heart Disease and Atrial Fibrillation

    Get PDF
    Objectives: The goal of this study is to investigate the impact of various underlying heart diseases (UHDs) and prior atrial fibrillation (AF) episodes on conduction heterogeneity. Background: It is unknown whether intra-atrial conduction during sinus rhythm differs between various UHD or is influenced by AF episodes. Methods: Epicardial sinus rhythm mapping of the right atrium, Bachmann's bundle (BB), left atrium and pulmonary vein area was performed in 447 participants (median age: 67 [interquartile range (IQR): 59 to 73] years) with or without AF undergoing cardiac surgery for ischemic heart disease, (ischemic and) valvular heart disease, or congenital heart disease. Conduction times (CTs) were defined as Δ local activation time between 2 adjacent electrodes and used to assess frequency (CTs ≥ 4 ms) and magnitude of conduction disorders (in increments of 10 ms). Results: When comparing the 3 types of UHD, there were no differences in frequencies and magnitude of CTs at all locations (p ≥ 0.017 and p ≥ 0.005, respectively). Prior AF episodes were associated with conduction slowing throughout both atria (14.9% [IQR: 11.8 to 17.0] vs. 12.8% [IQR: 10.9 to 14.6]; p < 0.001). At BB, CTs with magnitudes ≥30 ms were more common in patients with AF (n = 56.2% vs. n = 36.0%; p < 0.004). Conclusions: UHD has no impact on the frequency and severity of conduction disorders. AF episodes are associated with more conduction disorders throughout both atria and with more severe conduction disorders at BB. The next step will be to determine the relevance of these conduction disorders for AF development and maintenance
    corecore