26 research outputs found

    Establishment of a cell line persistently infected with bovine herpesvirus-4 by use of a recombinant virus

    No full text
    Bovine herpesvirus-4 (BHV-4), a gammaherpesvirus lacking a clear disease association, pro-ductively infects multiple cell lines of various species and causes cell death. A human rhabdomyosarcoma cell line, RD-4, infected with BHV-4 produced low levels of early and late viral RNAs and infectious virus, but exhibited no cytopathic effect. Using a recombinant BHV-4 containing a neomycin-resistance gene, we established RD-4-derived cell lines persistently infected with BHV-4. The viral genome in these cells was predominantly circular. Because of drug selection, every cell contained a viral genome. In addition, all cells stained with a BHV-4-specific antiserum. Therefore, these cell lines are not carrier cultures. These cells produced infectious virus at all passages tested. Even though cells were selected and maintained at a concentration of geneticin at least 2–5 times that necessary to kill uninfected RD-4 cells, selected cells contained only approximately one viral genome per diploid host cell genome. Persistently infected cells grew more slowly than uninfected cells, even in the absence of drug. The slower growth of these cells suggests that any growth advantage conferred by multiple copies of the neomycin-gene-carrying viral genome might be offset by the detrimental effects of viral gene expression. This situatio

    Generation and characterization of the first immortalized alpaca cell line suitable for diagnostic and immunization studies.

    No full text
    Raising of alpacas as exotic livestock for wool and meat production and as companion animals is growing in importance in the United States, Europe and Australia. Furthermore the alpaca, as well as the rest of the camelids, possesses the peculiarity of producing single-chain antibodies from which nanobodies can be generated. Nanobodies, due to their structural simplicity and reduced size, are very versatile in terms of manipulation and bio-therapeutic exploitation. In fact the biotech companies involved in nanobody production and application continue to grow in number and size. Hence, the development of reagents and tools to assist in the further growth of this new scientific and entrepreneurial reality is becoming a necessity. These are needed mainly to address alpaca disease diagnosis and prophylaxis, and to develop alpaca immunization strategies for nanobody generation. For instance an immortalized alpaca cell line would be extremely valuable. In the present work the first stabilized alpaca cell line from alpaca skin stromal cells (ASSCs) was generated and characterized. This cell line was shown to be suitable for replication of viruses bovine herpesvirus-1, bovine viral diarrhea virus and caprine herpesvirus-1 and the endocellular parasite Neospora caninum. Moreover ASSCs were easy to transfect and transduce by several methods. These two latter characteristics are extremely useful when recombinant antigens need to be produced in a host homologous system. This work could be considered as a starting point for the expansion of the biotechnologies linked to alpaca farming and industry
    corecore