2 research outputs found

    (2+1) Resonance Enhanced Ionization Spectroscopy of a State Selected Beam of OH Radicals

    Get PDF
    A state-selected beam of hydroxyl radicals is generated using a pulsed discharge source and hexapole field. The OH radicals are characterized by resonance-enhanced multiphoton ionization (REMPI) spectroscopy via the nested D  and 3  Rydberg states. Simplified spectra are observed from the selected ∣MJ∣ = 3/2 component of the upper Λ-doublet level of the lowest rotational state (J = 3/2) in ground (v″ = 0) and excited(v″ = 1–3) vibrational levels of the OH X  state. Two-photon transitions are observed to the D (v′ = 0–3) and 3 (v′ = 0,1) vibronic levels, extending previous studies to higher vibrational levels of the Rydberg states. Spectroscopic constants are derived for the Rydberg states and compared with prior experimental studies. Complementary first-principle theoretical studies of the D  and 3  Rydberg states [see M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. 123, 074310 (2005), following paper ] are used to interpret the experimental findings and examine the utility of the (2+1) REMPI scheme for sensitive detection of OH radicals

    Photodissociation of the OD radical at 226 and 243 nm

    Get PDF
    The photodissociation dynamics of state selected OD radicals has been examined at 243 and 226 nm using velocity map imaging to probe the angle–speed distributions of theD(2S) and O(3P2) products. Both experiment and complementary first principle calculations demonstrate that photodissociation occurs by promotion of OD from high vibrational levels of the ground X 2Π state to the repulsive 1 2Σ− state
    corecore