6 research outputs found

    Nanohybrid Materials with Tunable Birefringence via Cation Exchange in Polymer Films

    Get PDF
    In this work, a nanohybrid material based on a freestanding polymeric liquid crystal network capable of postmodification via cation exchange to tune birefringence is proposed. The smectic liquid crystal films can be infiltrated with a variety of cations, thereby changing the refractive indices (ne and no) and the effective birefringence (Δn) of the nanohybrid material, with reversible cation infiltration occurring within minutes. Birefringence could be tuned between values of 0.06 and 0.19, depending on the cation infiltrated into the network. Upon infiltration, a decrease in the smectic layer spacing is found with layer contraction independent of the induced change in birefringence. Potential applications are in the field of specialty optical devices, such as flexible, retunable reflective filters

    Self-assembly of defined block copolypeptides

    Get PDF

    Nanohybrid materials with tunable birefringence via cation exchange in polymer films

    No full text
    \u3cp\u3eIn this work, a nanohybrid material based on a freestanding polymeric liquid crystal network capable of postmodification via cation exchange to tune birefringence is proposed. The smectic liquid crystal films can be infiltrated with a variety of cations, thereby changing the refractive indices (n \u3csub\u3ee\u3c/sub\u3e and n \u3csub\u3eo\u3c/sub\u3e) and the effective birefringence (Δn) of the nanohybrid material, with reversible cation infiltration occurring within minutes. Birefringence could be tuned between values of 0.06 and 0.19, depending on the cation infiltrated into the network. Upon infiltration, a decrease in the smectic layer spacing is found with layer contraction independent of the induced change in birefringence. Potential applications are in the field of specialty optical devices, such as flexible, retunable reflective filters. \u3c/p\u3

    Liquid–liquid phase separation during amphiphilic self-assembly

    No full text
    \u3cp\u3eThe self-assembly of amphiphilic molecules in solution is a ubiquitous process in both natural and synthetic systems. The ability to effectively control the structure and properties of these systems is essential for tuning the quality of their functionality, yet the underlying mechanisms governing the transition from molecules to assemblies have not been fully resolved. Here we describe how amphiphilic self-assembly can be preceded by liquid–liquid phase separation. The assembly of a model block co-polymer system into vesicular structures was probed through a combination of liquid-phase electron microscopy, self-consistent field computations and Gibbs free energy calculations. This analysis shows the formation of polymer-rich liquid droplets that act as a precursor in the bottom-up formation of spherical micelles, which then evolve into vesicles. The liquid–liquid phase separation plays a role in determining the resulting vesicles’ structural properties, such as their size and membrane thickness, and the onset of kinetic traps during self-assembly.\u3c/p\u3
    corecore