2 research outputs found

    A case series exploring the human milk polyclonal IgA1 response to repeated SARS-CoV-2 vaccinations by LC–MS based fab profiling

    Get PDF
    Introduction: Upon vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) humans will start to produce antibodies targeting virus specific antigens that will end up in circulation. In lactating women such antibodies will also end up in breastmilk, primarily in the form of secretory immunoglobulin A1 (SIgA1), the most abundant immunoglobulin (Ig) in human milk. Here we set out to investigate the SIgA1 clonal repertoire response to repeated SARS-CoV-2 vaccination, using a LC–MS fragment antigen-binding (Fab) clonal profiling approach.Methods: We analyzed the breastmilk of six donors from a larger cohort of 109 lactating mothers who received one of three commonly used SARS-CoV-2 vaccines. We quantitatively monitored the SIgA1 Fab clonal profile over 16 timepoints, from just prior to the first vaccination until 15  days after the second vaccination.Results: In all donors, we detected a population of 89–191 vaccine induced clones. These populations were unique to each donor and heterogeneous with respect to individual clonal concentrations, total clonal titer, and population size. The vaccine induced clones were dominated by persistent clones (68%) which came up after the first vaccination and were retained or reoccurred after the second vaccination. However, we also observe transient SIgA1 clones (16%) which dissipated before the second vaccination, and vaccine induced clones which uniquely emerged only after the second vaccination (16%). These distinct populations were observed in all analyzed donors, regardless of the administered vaccine.Discussion: Our findings suggest that while individual donors have highly unique human milk SIgA1 clonal profiles and a highly personalized SIgA1 response to SARS-CoV-2 vaccination, there are also commonalities in vaccine induced responses

    Affimers as an alternative to antibodies for protein biomarker enrichment

    Get PDF
    INTRODUCTION: Assessing the specificity of protein binders is an essential first step in protein biomarker assay development. Affimers are novel protein binders and can potentially replace antibodies in multiple protein capture-based assays. Affimers are selected for their high specificity against the target protein and have benefits over antibodies like batch-to-batch reproducibility and are stable across a wide range of chemical conditions. Here we mimicked a typical initial screening of affimers and commercially available monoclonal antibodies against two non-related proteins, IL-37b and proinsulin, to assess the potential of affimers as alternative to antibodies. METHODS: Binding specificity of anti-IL-37b and anti-proinsulin affimers and antibodies was investigated via magnetic bead-based capture of their recombinant protein targets in human plasma. Captured proteins were analyzed using SDS-PAGE, Coomassie blue staining, Western blotting and LC-MS/MS-based proteomics. RESULTS: All affimers and antibodies were able to bind their target protein in human plasma. Gel and LC-MS/MS analysis showed that both affimer and antibody-based captures resulted in co-purified background proteins. However, affimer-based captures showed the highest relative enrichment of IL-37b and proinsulin. CONCLUSIONS: For both proteins tested, affimers show higher specificity in purifying their target proteins from human plasma compared to monoclonal antibodies. These results indicate that affimers are promising antibody-replacement tools for protein biomarker assay development
    corecore