1,806 research outputs found

    Adaptive Encoding Speed in Working Memory

    Get PDF
    Humans can adapt when complex patterns unfold at a faster or slower pace, for instance when remembering a grocery list that is dictated at an increasingly fast rate. Integrating information over such timescales crucially depends on working memory, but although recent findings have shown that working memory capacity can be flexibly adapted, such adaptations have not yet been demonstrated for encoding speed. In a series of experiments, we found that young adults encoded at a faster rate when they were adapted to overall and recent stimulus duration. Interestingly, our participants were unable to use explicit cues to speed up encoding, even though these cues were objectively more informative than statistical information. Our findings suggest that adaptive tuning of encoding speed in working memory is a fundamental but largely implicit mechanism underlying our ability to keep up with the pace of our surroundings

    A common dynamic prior for time in duration discrimination

    Get PDF
    Estimation of time depends heavily on both global and local statistical context. Durations that are short relative to the global distribution are systematically overestimated; durations that are locally preceded by long durations are also overestimated. Context effects are prominent in duration discrimination tasks, where a standard duration and a comparison duration are presented on each trial. In this study, we compare and test two models that posit a dynamically updating internal reference that biases time estimation on global and local scales in duration discrimination tasks. The internal reference model suggests that the internal reference operates during postperceptual stages and only interacts with the first presented duration. In contrast, a Bayesian account of time estimation implies that any perceived duration updates the internal reference and therefore interacts with both the first and second presented duration. We implemented both models and tested their predictions in a duration discrimination task where the standard duration varied from trial to trial. Our results are in line with a Bayesian perspective on time estimation. First, the standard systematically biased estimation of the comparison, such that shorter standards increased the likelihood of reporting that the comparison was shorter. Second, both the previous standard and comparison systematically biased time estimation of subsequent trials in the same direction. Third, more precise observers showed smaller biases. In sum, our findings suggest a common dynamic prior for time that is updated by each perceived duration and where the relative weighting of old and new observations is determined by their relative precision

    OpenML Benchmarking Suites

    Full text link
    Machine learning research depends on objectively interpretable, comparable, and reproducible algorithm benchmarks. Therefore, we advocate the use of curated, comprehensive suites of machine learning tasks to standardize the setup, execution, and reporting of benchmarks. We enable this through software tools that help to create and leverage these benchmarking suites. These are seamlessly integrated into the OpenML platform, and accessible through interfaces in Python, Java, and R. OpenML benchmarking suites are (a) easy to use through standardized data formats, APIs, and client libraries; (b) machine-readable, with extensive meta-information on the included datasets; and (c) allow benchmarks to be shared and reused in future studies. We also present a first, carefully curated and practical benchmarking suite for classification: the OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18)

    On-Off Intermittency in Time Series of Spontaneous Paroxysmal Activity in Rats with Genetic Absence Epilepsy

    Get PDF
    Dynamic behavior of complex neuronal ensembles is a topic comprising a streamline of current researches worldwide. In this article we study the behavior manifested by epileptic brain, in the case of spontaneous non-convulsive paroxysmal activity. For this purpose we analyzed archived long-term recording of paroxysmal activity in animals genetically susceptible to absence epilepsy, namely WAG/Rij rats. We first report that the brain activity alternated between normal states and epilepsy paroxysms is the on-off intermittency phenomenon which has been observed and studied earlier in the different nonlinear systems.Comment: 11 pages, 6 figure
    corecore