124 research outputs found

    Low-Dimensional Stochastic Modeling of the Electrical Properties of Biological Tissues

    Full text link
    Uncertainty quantification plays an important role in biomedical engineering as measurement data is often unavailable and literature data shows a wide variability. Using state-of-the-art methods one encounters difficulties when the number of random inputs is large. This is the case, e.g., when using composite Cole-Cole equations to model random electrical properties. It is shown how the number of parameters can be significantly reduced by the Karhunen-Loeve expansion. The low-dimensional random model is used to quantify uncertainties in the axon activation during deep brain stimulation. Numerical results for a Medtronic 3387 electrode design are given.Comment: 4 pages, 5 figure

    Dermatofibrosarcoma protuberans: Surgical excision versus Mohs surgery

    Get PDF
    The purpose of this project was to compare the recurrence rates of dermatofibrsarcoma protuberans (DFSP) treated with surgical excision (SE) and Mohs surgery (MS) at Yale. Patients were identified through the dermatopathology laboratory database and stratified by treatment. The following information was collected: age at onset, sex, disease state (primary presentation versus recurrence), tumor site, preoperative tumor size, postoperative defect size, excisional margin, duration of follow-up, and recurrence after treatment. Of the 30 patients, 14 were in the SE group, and 16 were in the MS group. There were no recurrences in the SE group, and there was 1 recurrence (6%) in the MS group, which occurred 37 months post-operatively. The average area of the tumors were 12.1 cm2 ± 16.1 (SE) and 5.3 cm2 ± 5.9 (MS), and the mean excisional margins were 3.8 cm ± 1.6 (SE) and 1.4 cm± 0.5 (MS). The mean duration of follow-up in the SE group was 33 months ± 41 (range: 1-116 months), and the mean duration of follow-up in the MS group was 26 months ± 25 (range: 2 to 69 months.) Although the MS group had a higher recurrence rate than the SE group, using the recurrence rates to make meaningful conclusions about the efficacy of the two treatment modalities is limited by the small n, lack of randomization to either procedure, and duration of follow-up. Once these issues are addressed, recurrence rates must also be adjusted for patient and tumor characteristics, that are associated with higher recurrence rates

    Adhesion of osteoblasts to a nanorough titanium implant surface

    Get PDF
    This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts

    Uncertainty Modeling and Analysis of the European X-ray Free Electron Laser Cavities Manufacturing Process

    Full text link
    This paper reports on comprehensive efforts on uncertainty quantification and global sensitivity analysis for accelerator cavity design. As a case study object the TESLA shaped superconducting cavities, as produced for the European X-ray Free Electron Laser (EXFEL), are selected. The choice for these cavities is explained by the available measurement data that can be leveraged to substantiate the simulation model. Each step of the manufacturing chain is documented together with the involved uncertainties. Several of these steps are mimicked on the simulation side, e.g. by introducing a random eigenvalue problem. The uncertainties are then quantified numerically and in particular the sensitivities give valuable insight into the systems behavior. We also compare these findings to purely statistical studies carried out for the manufactured cavities. More advanced, adaptive, surrogate modeling techniques are adopted, which are crucial to incorporate a large number of uncertain parameters. The main contribution is the detailed comparison and fusion of measurement results for the EXFEL cavities on the one hand and simulation based uncertainty studies on the other hand. After introducing the quantities of physical interest for accelerator cavities and the Maxwell eigenvalue problem, the details on the manufacturing of the EXFEL cavities and measurements are reported. This is followed by uncertainty modeling with quantification studies

    Lead-DBS v3.0: Mapping Deep Brain Stimulation Effects to Local Anatomy and Global Networks.

    Get PDF
    Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum:Towards a muon collider

    Get PDF
    corecore