69 research outputs found

    Noninvasive Assessment of Intra-Abdominal Pressure by Measurement of Abdominal Wall Tension

    Get PDF
    Background. Sustained increased intra-abdominal pressure (IAP) has negative effects. Noninvasive IAP measurement could be beneficial to improve monitoring of patients at risk and in whom IAP measurements might be unreliable. We assessed the relation between IAP and abdominal wall tension (AWT) in vitro and in vivo. Materials and Methods. The abdomens of 14 corpses were insufflated with air. IAP was measured at intervals up to 20 mm Hg. At each interval, AWT was measured five times at six points. In 42 volunteers, AWT was measured at five points in supine, sitting, and standing positions during various respiratory manoeuvres. Series were repeated in 14 volunteers to measure reproducibility by calculating coefficients of variation (CV). ANOVA was used for analyses. Results. In corpses, all points showed significant correlations between IAP and AWT (P < 0.001 for points 1-4 in the upper abdomen, P = 0.017 for point 5 and P = 0.008 for point 6 in the lower abdomen). Mean slopes were greatest at points across the epigastric region (points 1-3). In vivo measurements showed that AWT was on average 31% higher in men compared to women(P < 0.001), and increased from expiration to inspiration to Valsalva's manoeuvre (all P < 0.001). AWT was highest at points 1 and 2 and in standing position, followed by supine and sitting positions. BMI did not influence AWT. Mean CV of repeated measurements was 14%. Conclusions. AWT reflects IAP. The epigastric region appears most suitable for AWT measurements. Further longitudinal clinical studies are needed to assess usefulness of AWT measurements for monitoring of IAP. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved

    Renal tubular damage and worsening renal function in chronic heart failure:Clinical determinants and relation to prognosis (Bio-SHiFT study)

    Get PDF
    Background It is uncertain that chronic heart failure (CHF) patients are susceptible to renal tubular damage with that of worsening renal function (WRF) preceding clinical outcomes. Hypothesis Changes in tubular damage biomarkers are stronger predictors of subsequent clinical events than changes in creatinine (Cr), and both have different clinical determinants. Methods During 2.2 years, we repeatedly simultaneously collected a median of 9 blood and 8 urine samples per patient in 263 CHF patients. We determined the slopes (rates of change) of the biomarker trajectories for plasma (Cr) and urinary tubular damage biomarkers N-acetyl-beta-d-glucosaminidase (NAG), and kidney-injury-molecule (KIM)-1. The degree of tubular injury was ranked according to NAG and KIM-1 slopes: increase in neither, increase in either, or increase in both; WRF was defined as increasing Cr slope. The composite endpoint comprised HF-hospitalization, cardiac death, left ventricular assist device placement, and heart transplantation. Results Higher baseline NT-proBNP and lower eGFR predicted more severe tubular damage (adjusted odds ratio, adj. OR [95%CI, 95% confidence interval] per doubling NT-proBNP: 1.26 [1.07-1.49]; per 10 mL/min/1.73 m(2) eGFR decrease 1.16 [1.03-1.31]). Higher loop diuretic doses, lower aldosterone antagonist doses, and higher eGFR predicted WRF (furosemide per 40 mg increase: 1.32 [1.08-1.62]; spironolactone per 25 mg decrease: 1.76 [1.07-2.89]; per 10 mL/min/1.73 m(2) eGFR increase: 1.40 [1.20-1.63]). WRF and higher rank of tubular injury individually entailed higher risk of the composite endpoint (adjusted hazard ratios, adj. HR [95%CI]: WRF 1.9 [1.1-3.4], tubular 8.4 [2.6-27.9]; when combined risk was highest 15.0 [2.0-111.0]). Conclusion Slopes of tubular damage and WRF biomarkers had different clinical determinants. Both predicted clinical outcome, but this association was stronger for tubular injury. Prognostic effects of both appeared independent and additive

    Renal tubular damage and worsening renal function in chronic heart failure: Clinical determinants and relation to prognosis (Bio-SHiFT study)

    Get PDF
    Background: It is uncertain that chronic heart failure (CHF) patients are susceptible to renal tubular damage with that of worsening renal function (WRF) preceding clinical outcomes. Hypothesis: Changes in tubular damage biomarkers are stronger predictors of subsequent clinical events than changes in creatinine (Cr), and both have different clinical determinants. Methods: During 2.2 years, we repeatedly simultaneously collected a median of 9 blood and 8 urine samples per patient in 263 CHF patients. We determined the slopes (rates of change) of the biomarker trajectories for plasma (Cr) and urinary tubular damage biomarkers N-acetyl-β-d-glucosaminidase (NAG), and kidney-injury-molecule (KIM)-1. The degree of tubular injury was ranked according to NAG and KIM-1 slopes: increase in neither, increase in either, or increase in both; WRF was defined as increasing Cr slope. The composite endpoint comprised HF-hospitalization, cardiac death, left ventricular assist device placement, and heart transplantation. Results: Higher baseline NT-proBNP and lower eGFR predicted more severe tubular damage (adjusted odds ratio, adj. OR [95%CI, 95% confidence interval] per doubling NT-proBNP: 1.26 [1.07-1.49]; per 10 mL/min/1.73 m2 eGFR decrease 1.16 [1.03-1.31]). Higher loop diuretic doses, lower aldosterone antagonist doses, and higher eGFR predicted WRF (furosemide per 40 mg increase: 1.32 [1.08-1.62]; spironolactone per 25 mg decrease: 1.76 [1.07-2.89]; per 10 mL/min/1.73 m2 eGFR increase: 1.40 [1.20-1.63]). WRF and higher rank of tubular injury individually entailed higher risk of the composite endpoint (adjusted hazard ratios, adj. HR [95%CI]: WRF 1.9 [1.1-3.4], tubular 8.4 [2.6-27.9]; when combined risk was highest 15.0 [2.0-111.0]). Conclusion: Slopes of tubular damage and WRF biomarkers had different clinical determinants. Both predicted clinical outcome, but this association was stronger for tubular injury. Prognostic effects of both appeared independent and additive

    Temporal patterns of macrophage- and neutrophil-related markers are associated with clinical outcome in heart failure patients

    Get PDF
    Aims: Evidence on the association of macrophage- and neutrophil-related blood biomarkers with clinical outcome in heart failure patients is limited, and, with the exception of C-reactive protein, no data exist on their temporal evolution. We aimed to investigate whether temporal patterns of these biomarkers are related to clinical outcome in patients with stable chronic heart failure (CHF). Methods and Results: In 263 patients with CHF, we performed serial plasma measurements of scavenger receptor cysteine-rich type 1 protein M130 (CD163), tartrate-resistant acid phosphatase type 5 (TRAP), granulins (GRN), spondin-1 (SPON1), peptidoglycan recognition protein 1 (PGLYRP1), and tissue factor pathway inhibitor (TFPI). The Cardiovascular Panel III (Olink Proteomics AB, Uppsala, Sweden) was used. During 2.2 years of follow-up, we collected 1984 samples before the occurrence of the composite primary endpoint (PE) or censoring. For efficiency, we selected 567 samples for the measurements (all baseline samples, the last two samples preceding the PE, and the last sample before censoring in event-free patients). The relationship between repeatedly measured biomarker levels and the PE was evaluated by joint models. Mean (±standard deviation) age was 67 ± 13 years; 189 (72%) were men; left ventricular ejection fraction (%) was 32 ± 11. During follow-up, 70 (27%) patients experienced the PE. Serially measured biomarkers predicted the PE in a multivariable model adjusted for baseline clinical characteristics [hazard ratio (95% confidence interval) per 1-standard deviation change in biomarker]: CD163 [2.07(1.47–2.98), P < 0.001], TRAP [0.62 (0.43–0.90), P = 0.009], GRN [2.46 (1.64–3.84), P < 0.001], SPON1 [3.94 (2.50–6.50), P < 0.001], and PGLYRP1 [1.62 (1.14–2.31), P = 0.006]. Conclusions: Changes in plasma levels of CD163, TRAP, GRN, SPON1, and PGLYRP1 precede adverse cardiovascular events in patients with CHF

    Proteomic biomarkers related to obesity in heart failure with reduced ejection fraction and their associations with outcome

    Get PDF
    Objective: Heart failure (HF) pathophysiology in patients with obesity may be distinct. To study these features, we identified obesity-related biomarkers from 4210 circulating proteins in patients with HF with reduced ejection fraction (HFrEF) and examined associations of these proteins with HF prognosis and biological mechanisms. Methods: In 373 patients with trimonthly blood sampling during a median follow-up of 2.1 (25th–75th percentile: 1.1–2.6) years, we applied an aptamer-based multiplex approach measuring 4210 proteins in baseline samples and the last two samples before study end. Associations between obesity (BMI &gt; 30 kg/m 2) and baseline protein levels were analyzed. Subsequently, associations of serially measured obesity-related proteins with biological mechanisms and the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, left ventricular assist device implantation, and heart transplantation) were examined. Results: Obesity was identified in 26% (96/373) of patients. A total of 30% (112/373) experienced a PEP (with obesity: 26% [25/96] vs. without obesity: 31% [87/277]). A total of 141/4210 proteins were linked to obesity, reflecting mechanisms of neuron projection development, cell adhesion, and muscle cell migration. A total of 50/141 proteins were associated with the PEP, of which 12 proteins related to atherosclerosis or hypertrophy provided prognostic information beyond clinical characteristics, N-terminal pro-B-type natriuretic peptide, and high-sensitivity troponin T. Conclusions: Patients with HFrEF and obesity show distinct proteomic profiles compared to patients with HFrEF without obesity. Obesity-related proteins are independently associated with HF outcome. These proteins carry potential to improve management of obesity-related HF and could be leads for future research. (Figure presented.).</p

    HFrEF subphenotypes based on 4210 repeatedly measured circulating proteins are driven by different biological mechanisms

    Get PDF
    Background: HFrEF is a heterogenous condition with high mortality. We used serial assessments of 4210 circulating proteins to identify distinct novel protein-based HFrEF subphenotypes and to investigate underlying dynamic biological mechanisms. Herewith we aimed to gain pathophysiological insights and fuel opportunities for personalised treatment. Methods: In 382 patients, we performed trimonthly blood sampling during a median follow-up of 2.1 [IQR:1.1–2.6] years. We selected all baseline samples and two samples closest to the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, LVAD implantation, and heart transplantation) or censoring, and applied an aptamer-based multiplex proteomic approach. Using unsupervised machine learning methods, we derived clusters from 4210 repeatedly measured proteomic biomarkers. Sets of proteins that drove cluster allocation were analysed via an enrichment analysis. Differences in clinical characteristics and PEP occurrence were evaluated. Findings: We identified four subphenotypes with different protein profiles, prognosis and clinical characteristics, including age (median [IQR] for subphenotypes 1–4, respectively:70 [64, 76], 68 [60, 79], 57 [47, 65], 59 [56, 66]years), EF (30 [26, 36], 26 [20, 38], 26 [22, 32], 33 [28, 37]%), and chronic renal failure (45%, 65%, 36%, 37%). Subphenotype allocation was driven by subsets of proteins associated with various biological functions, such as oxidative stress, inflammation and extracellular matrix organisation. Clinical characteristics of the subphenotypes were aligned with these associations. Subphenotypes 2 and 3 had the worst prognosis compared to subphenotype 1 (adjHR (95%CI):3.43 (1.76–6.69), and 2.88 (1.37–6.03), respectively). Interpretation: Four circulating-protein based subphenotypes are present in HFrEF, which are driven by varying combinations of protein subsets, and have different clinical characteristics and prognosis. Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT01851538 https://clinicaltrials.gov/ct2/show/NCT01851538. Funding: EU/ EFPIA IMI2JU BigData@Heart grant n° 116074, Jaap Schouten Foundation and Noordwest Academie.</p

    Guideline implementation, drug sequencing, and quality of care in heart failure:design and rationale of TITRATE-HF

    Get PDF
    Aims: Current heart failure (HF) guidelines recommend to prescribe four drug classes in patients with HF with reduced ejection fraction (HFrEF). A clear challenge exists to adequately implement guideline-directed medical therapy (GDMT) regarding the sequencing of drugs and timely reaching target dose. It is largely unknown how the paradigm shift from a serial and sequential approach for drug therapy to early parallel application of the four drug classes will be executed in daily clinical practice, as well as the reason clinicians may not adhere to new guidelines. We present the design and rationale for the real-world TITRATE-HF study, which aims to assess sequencing strategies for GDMT initiation, dose titration patterns (order and speed), intolerance for GDMT, barriers for implementation, and long-term outcomes in patients with de novo, chronic, and worsening HF. Methods and results: A total of 4000 patients with HFrEF, HF with mildly reduced ejection fraction, and HF with improved ejection fraction will be enrolled in &gt;40 Dutch centres with a follow-up of at least 3 years. Data collection will include demographics, physical examination and vital parameters, electrocardiogram, laboratory measurements, echocardiogram, medication, and quality of life. Detailed information on titration steps will be collected for the four GDMT drug classes. Information will include date, primary reason for change, and potential intolerances. The primary clinical endpoints are HF-related hospitalizations, HF-related urgent visits with a need for intravenous diuretics, all-cause mortality, and cardiovascular mortality. Conclusions: TITRATE-HF is a real-world multicentre longitudinal registry that will provide unique information on contemporary GDMT implementation, sequencing strategies (order and speed), and prognosis in de novo, worsening, and chronic HF patients.</p

    Outcome and Predictors for Mortality in Patients with Cardiogenic Shock:A Dutch Nationwide Registry-Based Study of 75,407 Patients with Acute Coronary Syndrome Treated by PCI

    Get PDF
    It is important to gain more insight into the cardiogenic shock (CS) population, as currently, little is known on how to improve outcomes. Therefore, we assessed clinical outcome in acute coronary syndrome (ACS) patients treated by percutaneous coronary intervention (PCI) with and without CS at admission. Furthermore, the incidence of CS and predictors for mortality in CS patients were evaluated. The Netherlands Heart Registration (NHR) is a nationwide registry on all cardiac interventions. We used NHR data of ACS patients treated with PCI between 2015 and 2019. Among 75,407 ACS patients treated with PCI, 3028 patients (4.1%) were identified with CS, respectively 4.3%, 3.9%, 3.5%, and 4.3% per year. Factors associated with mortality in CS were age (HR 1.02, 95%CI 1.02-1.03), eGFR (HR 0.98, 95%CI 0.98-0.99), diabetes mellitus (DM) (HR 1.25, 95%CI 1.08-1.45), multivessel disease (HR 1.22, 95%CI 1.06-1.39), prior myocardial infarction (MI) (HR 1.24, 95%CI 1.06-1.45), and out-of-hospital cardiac arrest (OHCA) (HR 1.71, 95%CI 1.50-1.94). In conclusion, in this Dutch nationwide registry-based study of ACS patients treated by PCI, the incidence of CS was 4.1% over the 4-year study period. Predictors for mortality in CS were higher age, renal insufficiency, presence of DM, multivessel disease, prior MI, and OHCA

    Pulmonary artery pressure monitoring in chronic heart failure:effects across clinically relevant subgroups in the MONITOR-HF trial

    Get PDF
    Background and Aims:In patients with chronic heart failure (HF), the MONITOR-HF trial demonstrated the efficacy of pulmonary artery (PA)-guided HF therapy over standard of care in improving quality of life and reducing HF hospitalizations and mean PA pressure. This study aimed to evaluate the consistency of these benefits in relation to clinically relevant subgroups. Methods: The effect of PA-guided HF therapy was evaluated in the MONITOR-HF trial among predefined subgroups based on age, sex, atrial fibrillation, diabetes mellitus, left ventricular ejection fraction, HF aetiology, cardiac resynchronization therapy, and implantable cardioverter defibrillator. Outcome measures were based upon significance in the main trial and included quality of life-, clinical-, and PA pressure endpoints, and were assessed for each subgroup. Differential effects in relation to the subgroups were assessed with interaction terms. Both unadjusted and multiple testing adjusted interaction terms were presented. Results: The effects of PA monitoring on quality of life, clinical events, and PA pressure were consistent in the predefined subgroups, without any clinically relevant heterogeneity within or across all endpoint categories (all adjusted interaction P-values were non-significant). In the unadjusted analysis of the primary endpoint quality-of-life change, weak trends towards a less pronounced effect in older patients (Pinteraction = .03; adjusted Pinteraction = .33) and diabetics (Pinteraction = .01; adjusted Pinteraction = .06) were observed. However, these interaction effects did not persist after adjusting for multiple testing. Conclusions: This subgroup analysis confirmed the consistent benefits of PA-guided HF therapy observed in the MONITOR-HF trial across clinically relevant subgroups, highlighting its efficacy in improving quality of life, clinical, and PA pressure endpoints in chronic HF patients.</p
    • …
    corecore