530 research outputs found

    Predicting sex from brain rhythms with deep learning

    Full text link
    We have excellent skills to extract sex from visual assessment of human faces, but assessing sex from human brain rhythms seems impossible. Using deep convolutional neural networks, with unique potential to find subtle differences in apparent similar patterns, we explore if brain rhythms from either sex contain sex specific information. Here we show, in a ground truth scenario, that a deep neural net can predict sex from scalp electroencephalograms with an accuracy of >80% (p < 10-5), revealing that brain rhythms are sex specific. Further, we extracted sex-specific features from the deep net filter layers, showing that fast beta activity (20-25 Hz) and its spatial distribution is a main distinctive attribute. This demonstrates the ability of deep nets to detect features in spatiotemporal data unnoticed by visual assessment, and to assist in knowledge discovery. We anticipate that this approach may also be successfully applied to other specialties where spatiotemporal data is abundant, including neurology, cardiology and neuropsychology

    Intensive care unit depth of sleep:proof of concept of a simple electroencephalography index in the non-sedated

    Get PDF
    INTRODUCTION: Intensive care unit (ICU) patients are known to experience severely disturbed sleep, with possible detrimental effects on short- and long- term outcomes. Investigation into the exact causes and effects of disturbed sleep has been hampered by cumbersome and time consuming methods of measuring and staging sleep. We introduce a novel method for ICU depth of sleep analysis, the ICU depth of sleep index (IDOS index), using single channel electroencephalography (EEG) and apply it to outpatient recordings. A proof of concept is shown in non-sedated ICU patients. METHODS: Polysomnographic (PSG) recordings of five ICU patients and 15 healthy outpatients were analyzed using the IDOS index, based on the ratio between gamma and delta band power. Manual selection of thresholds was used to classify data as either wake, sleep or slow wave sleep (SWS). This classification was compared to visual sleep scoring by Rechtschaffen & Kales criteria in normal outpatient recordings and ICU recordings to illustrate face validity of the IDOS index. RESULTS: When reduced to two or three classes, the scoring of sleep by IDOS index and manual scoring show high agreement for normal sleep recordings. The obtained overall agreements, as quantified by the kappa coefficient, were 0.84 for sleep/wake classification and 0.82 for classification into three classes (wake, non-SWS and SWS). Sensitivity and specificity were highest for the wake state (93% and 93%, respectively) and lowest for SWS (82% and 76%, respectively). For ICU recordings, agreement was similar to agreement between visual scorers previously reported in literature. CONCLUSIONS: Besides the most satisfying visual resemblance with manually scored normal PSG recordings, the established face-validity of the IDOS index as an estimator of depth of sleep was excellent. This technique enables real-time, automated, single channel visualization of depth of sleep, facilitating the monitoring of sleep in the ICU

    Unstandardized Treatment of Electroencephalographic Status Epilepticus Does Not Improve Outcome of Comatose Patients after Cardiac Arrest

    Get PDF
    Objective: Electroencephalographic status epilepticus occurs in 9–35% of comatose patients after cardiac arrest. Mortality is 90–100%. It is unclear whether (some) seizure patterns represent a condition in which anti-epileptic treatment may improve outcome, or severe ischemic damage, in which treatment is futile. We explored current treatment practice and its effect on patients’ outcome. Methods: We retrospectively identified patients that were treated with anti-epileptic drugs from our prospective cohort study on the value of continuous electroencephalography (EEG) in comatose patients after cardiac arrest. Outcome at 6 months was dichotomized between “good” [cerebral performance category (CPC) 1 or 2] and “poor” (CPC 3, 4, or 5). EEG analyses were done at 24 h after cardiac arrest and during anti-epileptic treatment. Unequivocal seizures and generalized periodic discharges during more than 30 min were classified as status epilepticus. Results: Thirty-one (22%) out of 139 patients were treated with anti-epileptic drugs (phenytoin, levetiracetam, valproate, clonazepam, propofol, midazolam), of whom 24 had status epilepticus. Dosages were moderate, barbiturates were not used, medication induced burst-suppression not achieved, and treatment improved electroencephalographic status epilepticus patterns temporarily (<6 h). Twenty-three patients treated for status epilepticus (96%) died. In patients with status epilepticus at 24 h, there was no difference in outcome between those treated with and without anti-epileptic drugs. Conclusion: In comatose patients after cardiac arrest complicated by electroencephalographic status epilepticus, current practice includes unstandardized, moderate treatment with anti-epileptic drugs. Although widely used, this does probably not improve patients’ outcome. A randomized controlled trial to estimate the effect of standardized, aggressive treatment, directed at complete suppression of epileptiform activity during at least 24 h, is needed and in preparation

    Evolution of Excitation–Inhibition Ratio in Cortical Cultures Exposed to Hypoxia

    Get PDF
    In the core of a brain infarct, neuronal death occurs within minutes after loss of perfusion. In the penumbra, a surrounding area with some residual perfusion, neurons initially remain structurally intact, but hypoxia-induced synaptic failure impedes neuronal activity. Penumbral activity may recover or further deteriorate, reflecting cell death. Mechanisms leading to either outcome remain ill-understood, but may involve changes in the excitation to inhibition (E/I) ratio. The E/I ratio is determined by structural (relative densities of excitatory and inhibitory synapses) and functional factors (synaptic strengths). Clinical studies demonstrated excitability alterations in regions surrounding the infarct core. These may be related to structural E/I changes, but the effects of hypoxia /ischemia on structural connectivity have not yet been investigated, and the role of structural connectivity changes in excitability alterations remains unclear. We investigated the evolution of the structural E/I ratio and associated network excitability in cortical cultures exposed to severe hypoxia of varying duration. 6–12 h of hypoxia reduced the total synaptic density. In particular, the inhibitory synaptic density dropped significantly, resulting in an elevated E/I ratio. Initially, this does not lead to increased excitability due to hypoxia-induced synaptic failure. Increased excitability becomes apparent upon reoxygenation after 6 or 12 h, but not after 24 h. After 24 h of hypoxia, structural patterns of vesicular glutamate stainings change. This possibly reflects disassembly of excitatory synapses, and may account for the irreversible reduction of activity and stimulus responses seen after 24 h

    Can we learn from hidden mistakes? Self-fulfilling prophecy and responsible neuroprognostic innovation

    Get PDF
    A self-fulfilling prophecy (SFP) in neuroprognostication occurs when a patient in coma is predicted to have a poor outcome, and life-sustaining treatment is withdrawn on the basis of that prediction, thus directly bringing about a poor outcome (viz. death) for that patient. In contrast to the predominant emphasis in the bioethics literature, we look beyond the moral issues raised by the possibility that an erroneous prediction might lead to the death of a patient who otherwise would have lived. Instead, we focus on the problematic epistemic consequences of neuroprognostic SFPs in settings where research and practice intersect. When this sort of SFP occurs, the problem is that physicians and researchers are never in a position to notice whether their original prognosis was correct or incorrect, since the patient dies anyway. Thus, SFPs keep us from discerning false positives from true positives, inhibiting proper assessment of novel prognostic tests. This epistemic problem of SFPs thus impedes learning, but ethical obligations of patient care make it difficult to avoid SFPs. We then show how the impediment to catching false positive indicators of poor outcome distorts research on novel techniques for neuroprognostication, allowing biases to persist in prognostic tests. We finally highlight a particular risk that a precautionary bias towards early withdrawal of life-sustaining treatment may be amplified. We conclude with guidelines about how researchers can mitigate the epistemic problems of SFPs, to achieve more responsible innovation of neuroprognostication for patients in coma

    On Geometric Alignment in Low Doubling Dimension

    Get PDF
    In real-world, many problems can be formulated as the alignment between two geometric patterns. Previously, a great amount of research focus on the alignment of 2D or 3D patterns, especially in the field of computer vision. Recently, the alignment of geometric patterns in high dimension finds several novel applications, and has attracted more and more attentions. However, the research is still rather limited in terms of algorithms. To the best of our knowledge, most existing approaches for high dimensional alignment are just simple extensions of their counterparts for 2D and 3D cases, and often suffer from the issues such as high complexities. In this paper, we propose an effective framework to compress the high dimensional geometric patterns and approximately preserve the alignment quality. As a consequence, existing alignment approach can be applied to the compressed geometric patterns and thus the time complexity is significantly reduced. Our idea is inspired by the observation that high dimensional data often has a low intrinsic dimension. We adopt the widely used notion "doubling dimension" to measure the extents of our compression and the resulting approximation. Finally, we test our method on both random and real datasets, the experimental results reveal that running the alignment algorithm on compressed patterns can achieve similar qualities, comparing with the results on the original patterns, but the running times (including the times cost for compression) are substantially lower

    Quantification of growth patterns of screen-detected lung cancers:The NELSON study

    Get PDF
    Objectives: Although exponential growth is assumed for lung cancer, this has never been quantified in vivo. Aim of this study was to evaluate and quantify growth patterns of lung cancers detected in the Dutch-Belgian low-dose computed tomography (CT) lung cancer screening trial (NELSON), in order to elucidate the development and progression of early lung cancer.Materials and methods: Solid lung nodules found at &gt;= 3 CT examinations before lung cancer diagnosis were included. Lung cancer volume (V) growth curves were fitted with a single exponential, expressed as V = V-1 exp(t/tau), with t time from baseline (days), V-1 estimated baseline volume (mm(3)), and tau estimated time constant. The R-2 coefficient of determination was used to evaluate goodness of fit. Overall volume-doubling time for the individual lung cancer is given by tau*log(2).Results: Forty-seven lung cancers in 46 participants were included. Forty participants were male (87.0%); mean age was 61.7 years (standard deviation, 6.2 years). Median nodule size at baseline was 99.5 mm(3) (IQR: 46.8-261.8 mm(3)). Nodules were followed for a median of 770 days (inter-quartile range: 383-1102 days) before lung cancer diagnosis. One cancer (2.1%) was diagnosed after six CT examinations, six cancers (12.8%) were diagnosed after five CTs, 14 (29.8%) after four CTs, and 26 cancers (55.3%) after three CTs. Lung cancer growth could be described by an exponential function with excellent goodness of fit (R-2 0.98). Median overall volume-doubling time was 348 days (inter-quartile range: 222-492 days).Conclusion: This study based on CT lung cancer screening provides in vivo evidence that growth of cancerous small-to-intermediate sized lung nodules detected at low-dose CT lung cancer screening can be described by an exponential function such as volume-doubling time. (C) 2017 Elsevier B.V. All rights reserved.</p
    • …
    corecore