857 research outputs found

    Surveillance as an Option for the Treatment of Small Renal Masses

    Get PDF
    OBJECTIVES. To review the natural history and biological potential of small renal masses in order to evaluate surveillance as a treatment option. METHODS. Literature search of Medline and additional references from non-Medline-indexed publications concerning surveillance of small renal masses. RESULTS. The natural history and biological potential of small renal masses can still not be unambiguously predicted at present. There seems to be no clear correlation between tumour size and presence of benign histology. The majority of small renal masses grow and the majority are cancer, but one cannot safely assume that a lack of growth on serial CT scans is the confirmation of absence of malignancy. Needle core biopsies could be used to help in decision making. They show a high accuracy for histopathological tumour type but are less accurate in evaluating Fuhrman grade. CONCLUSIONS. At present, surveillance of small renal masses should only be considered in elderly and/or infirm patients with competing health risks, in those with a limited life expectancy, and in those for whom minimal invasive treatment or surgery is not an option. In all other patients, active surveillance should only be considered in the context of a study protocol. Long-term, prospective studies are needed to provide a more accurate assessment of the natural history and metastastic potential of small renal masses

    Preclinical Evidence for the Benefits of Penile Rehabilitation Therapy following Nerve-Sparing Radical Prostatectomy

    Get PDF
    Erectile dysfunction following radical prostatectomy remains a frequent problem despite the development of nerve-sparing techniques. This erectile dysfunction is believed to be neurogenic, enhanced by hypoxia-induced structural changes which result in additional veno-occlusive dysfunction. Recently, daily use of intracavernous vasoactive substances and oral use of PDE5-inhibitors have been clinically studied for treatment of postprostatectomy erectile dysfunction. Since these studies showed benefits of “penile rehabilitation therapy,” these effects have been studied in a preclinical setting. We reviewed experimental literature on erectile tissue preserving and neuroregenerative treatment strategies, and found that preservation of the erectile tissue by the use of intracavernous nitric oxide donors or vasoactive substances, oral PDE5-inhibitors, and hyperbaric oxygen therapy improved erectile function by antifibrotic effects and preservation of smooth muscle. Furthermore, neuroregenerative strategies using neuroimmunophilin ligands, neurotrophins, growth factors, and stem cell therapy show improved erectile function by preservation of NOS-containing nerve fibers

    Complications and Functional Results of Surgery for Locally Advanced Prostate Cancer

    Get PDF
    The role of surgery in clinical stage T3 prostate cancer (cT3 PCa) is still subject to debate. We reviewed the records of 139 consecutive patients who underwent a radical prostatectomy (RP) for cT3 PCa with a mean follow-up of 8 years. All data related to surgical and perioperative complications were collected. Continence and erectile function were assessed at 12 months postoperatively and long-term oncologic outcomes were analyzed. Rectal injury and injury of the obturator nerve occurred both in 0.7% of cases. No serious in-hospital complications were noted and no reintervention was needed. Lymphatic leakage was noted in 2.2% of patients and 1.4% experienced prolonged drainage of urine. In 7.2%, wound-related problems occurred. Anastomotic stricture occurred in 2.9%. These complication rates were not different compared to surgical series of RP in localized PCa. At 12 months, complete continence was 87.8% and erectile function had fully recovered in 6% and 10% of patients who underwent a non-nerve sparing or unilateral nerve-sparing procedure, respectively. 10-year estimated biochemical PFS, clinical PFS, CSS and OS were 51.8%, 85.6%, 94.6% and 85.9%, respectively. In cT3 PCa, RP is technically feasible with morbidity comparable to RP in clinically localized PCa. Long-term oncologic control was excellent

    CARBOTRAF: A decision Support system for reducing pollutant emissions by adaptive traffic management

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses all these model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    Reducing environmental impact by adaptive traffic control and management for urban road networks

    Get PDF
    This paper investigates the effectiveness of traffic signal control and variable message sign (VMS) as environmental traffic management tool. The focus is on black carbon and CO2, which are among the highest contributors to climate change. The modelling tool chain adopted to support this study includes traffic microsimulation, emission modelling and dispersion modelling. A number of scenarios have been simulated with different levels of demand and VMS compliance rates. The results demonstrate the potential of these interventions in reducing black carbon and CO2 emissions and improving air quality, as well as reducing traffic congestion and travel delays

    Air quality impact of a decision support system for reducing pollutant emissions: CARBOTRAF

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses these off-line model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    Ultra-wideband radar for simultaneous and unobtrusive monitoring of respiratory and heart rates in early childhood:A Deep Transfer Learning Approach

    Get PDF
    Unobtrusive monitoring of children’s heart rate (HR) and respiratory rate (RR) can be valuable for promoting the early detection of potential health issues, improving communication with healthcare providers and reducing unnecessary hospital visits. A promising solution for wireless vital sign monitoring is radar technology. This paper presents a novel approach for the simultaneous estimation of children’s RR and HR utilizing ultra-wideband (UWB) radar using a deep transfer learning algorithm in a cohort of 55 children. The HR and RR are calculated by processing radar signals via spectrogram from time epochs of 10 s (25 sample length of hamming window with 90% overlap) and then transforming the resultant representation into 2-dimensional images. These images were fed into a pre-trained Visual Geometry Group-16 (VGG-16) model (trained on ImageNet dataset), with weights of five added layers fine-tuned using the proposed data. The prediction on the test data achieved a mean absolute error (MAE) of 7.3 beats per minute (BPM &lt; 6.5% of average HR) and 2.63 breaths per minute (BPM &lt; 7% of average RR). We also achieved a significant Pearson’s correlation of 77% and 81% between true and extracted for HR and RR, respectively. HR and RR samples are extracted every 10 s.</p
    corecore