36 research outputs found

    An Algorithm for Finding Candidate Synaptic Sites in Computer Generated Networks of Neurons with Realistic Morphologies

    Get PDF
    Neurons make synaptic connections at locations where axons and dendrites are sufficiently close in space. Typically the required proximity is based on the dimensions of dendritic spines and axonal boutons. Based on this principle one can search those locations in networks formed by reconstructed neurons or computer generated neurons. Candidate synapses are then located where axons and dendrites are within a given criterion distance from each other. Both experimentally reconstructed and model generated neurons are usually represented morphologically by piecewise-linear structures (line pieces or cylinders). Proximity tests are then performed on all pairs of line pieces from both axonal and dendritic branches. Applying just a test on the distance between line pieces may result in local clusters of synaptic sites when more than one pair of nearby line pieces from axonal and dendritic branches is sufficient close, and may introduce a dependency on the length scale of the individual line pieces. The present paper describes a new algorithm for defining locations of candidate synapses which is based on the crossing requirement of a line piece pair, while the length of the orthogonal distance between the line pieces is subjected to the distance criterion for testing 3D proximity

    Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4

    Get PDF
    A semi-purified nitrile hydratase from Rhodococcus erythropolis A4 was applied to biotransformations of 3-oxonitriles 1a–4a, 3-hydroxy-2-methylenenitriles 5a–7a, 4-hydroxy-2-methylenenitriles 8a–9a, 3-hydroxynitriles 10a–12a and 3-acyloxynitrile 13a into amides 1b–13b. Cross-linked enzyme aggregates (CLEAs) with nitrile hydratase and amidase activities (88% and 77% of the initial activities, respectively) were prepared from cell-free extract of this microorganism and used for nitrile hydration in presence of ammonium sulfate, which selectively inhibited amidase activity. The genes nha1 and nha2 coding for α and β subunits of nitrile hydratase were cloned and sequenced

    Microbial Isobutyronitrile Utilization under Haloalkaline Conditionsâ–¿

    No full text
    The utilization of isobutyronitrile (iBN) as a C and N source under haloalkaline conditions by microbial communities from soda lake sediments and soda soils was studied. In both cases, a consortium consisting of two different bacterial species capable of the complete degradation and utilization of iBN at pH 10 was selected. The soda lake sediment consortium consisted of a new actinobacterium and a gammaproteobacterium from the genus Marinospirillum. The former was capable of fast hydrolysis of aliphatic nitriles to the corresponding amides and much-slower further hydrolysis of the amides to carboxylic acids. Its partner cannot hydrolyze nitriles but grew rapidly on amides and carboxylic acids, thus acting as a scavenger of products released by the actinobacterium. The soda soil consortium consisted of two Bacillus species (RNA group 1). One of them initiated nitrile hydrolysis, and the other utilized the hydrolysis products isobutyroamide (iBA) and isobutyrate (iB). In contrast to the actinobacterium, the nitrile-hydrolyzing soil Bacillus grew rapidly with hydrolysis products, but it was dependent on vitamins most probably supplied by its product-utilizing partner. All four bacterial strains isolated were moderately salt-tolerant alkaliphiles with a pH range for growth from pH 7.0 to 8.5 up to 10.3 to 10.5. However, both their nitrile hydratase and amidase activities had a near-neutral pH optimum, indicating an intracellular localization of these enzymes. Despite this fact, the study demonstrated a possibility of whole-cell biocatalytic hydrolysis of various nitriles at haloalkaline conditions

    Probing the enantioselectivity of a diverse group of purified cobalt-centred nitrile hydratases

    No full text
    In this study a diverse range of purified cobalt containing nitrile hydratases (NHases, EC 4.2.1.84) from Rhodopseudomonas palustris HaA2 (HaA2), Rhodopseudomonas palustris CGA009 (009), Sinorhizobium meliloti 1021 (1021), and Nitriliruptor alkaliphilus (iso2), were screened for the first time for their enantioselectivity towards a broad range of chiral nitriles. Enantiomeric ratios of >100 were found for the NHases from HaA2 and CGA009 on 2-phenylpropionitrile. In contrast, the Fe-containing NHase from the well-characterized Rhodococcus erythropolis AJ270 (AJ270) was practically aselective with a range of different α-phenylacetonitriles. In general, at least one bulky group in close proximity to the α-position of the chiral nitriles seemed to be necessary for enantioselectivity with all NHases tested. Nitrile groups attached to a quaternary carbon atom were only reluctantly accepted and showed no selectivity. Enantiomeric ratios of 80 and >100 for AJ270 and iso2, respectively, were found for the pharmaceutical intermediate naproxennitrile, and 3-(1-cyanoethyl)benzoic acid was hydrated to the corresponding amide by iso2 with an enantiomeric ratio of >100

    The incidence of traumatic brain injury in young people in the catchment area of the University Hospital Rotterdam, The Netherlands

    No full text
    Background: Traumatic brain injuiy (TBI) is in the developed countries the most common cause of death and disability in childhood.Aim: The purpose of this study is to estimate the incidence of TBI for children and young people in an urbanised region of the Netherlands and to describe relevant characteristics of this group.Methods: Patients, aged 1 month - 24 years who presented with traumatic brain injury at the Erasmus University Hospital (including the Sophia Children's Hospital) in 2007 and 2008 were included in a retrospective study. Data were collected by means of diagnosis codes and search terms for TBI in patient records. The incidence of TBI in the different referral areas of the hospital for standard, specialised and intensive patient care was estimated.Results: 472 patients met the inclusion criteria. The severity of the Injury was classified as mild in 342 patients, moderate in 50 patients and severe in 80 patients. The total incidence of traumatic brain injury in the referral area of the Erasmus University Hospital was estimated at 113.9 young people per 100.000. The incidence for mild traumatic brain injury was estimated at 104.4 young people, for moderate 6.1 and for severe 3.4 young people per 100.000.Conclusion: The ratio for mild, moderate and severe traumatic brain injury in children and young people was 33.7-1.8-1.In the mild TBI group almost 17% of the patients reported sequelae. The finding that 42% of them had a normal brain CT scan at admission underwrites the necessity of careful follow up of children and young people with mild TBI. (C) 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved

    Pilot-scale production of peroxygenase from agrocybe aegerita

    No full text
    The pilot-scale production of the peroxygenase from Agrocybe aegerita (rAaeUPO) is demonstrated. In a fed-batch fermentation of the recombinant Pichia pastoris, the enzyme was secreted into the culture medium to a final concentration of 0.29 g L-1 corresponding to 735 g of the peroxygenase in 2500 L of the fermentation broth after 6 days. Due to nonoptimized downstream processing, only 170 g of the enzyme has been isolated. The preparative usefulness of the so-obtained enzyme preparation has been demonstrated at a semipreparative scale (100 mL) as an example of the stereoselective hydroxylation of ethyl benzene. Using an adjusted H2O2 feed rate, linear product formation was observed for 7 days, producing more than 5 g L-1 (R)-1-phenyl ethanol. The biocatalyst performed more than 340.000 catalytic turnovers (942 g of the product per gram of rAaeUPO). BT/Biocatalysi
    corecore