3 research outputs found

    Tumors Widely Express Hundreds of Embryonic Germline Genes.

    Get PDF
    We have recently described a class of 756 genes that are widely expressed in cancers, but are normally restricted to adult germ cells, referred to as germ cell cancer genes (GC genes). We hypothesized that carcinogenesis involves the reactivation of biomolecular processes and regulatory mechanisms that, under normal circumstances, are restricted to germline development. This would imply that cancer cells share gene expression profiles with primordial germ cells (PGCs). We therefore compared the transcriptomes of human PGCs (hPGCs) and PGC-like cells (PGCLCs) with 17,382 samples from 54 healthy somatic tissues (GTEx) and 11,003 samples from 33 tumor types (TCGA), and identified 672 GC genes, expanding the known GC gene pool by 387 genes (51%). We found that GC genes are expressed in clusters that are often expressed in multiple tumor types. Moreover, the amount of GC gene expression correlates with poor survival in patients with lung adenocarcinoma. As GC genes specific to the embryonic germline are not expressed in any adult tissue, targeting these in cancer treatment may result in fewer side effects than targeting conventional cancer/testis (CT) or GC genes and may preserve fertility. We anticipate that our extended GC dataset enables improved understanding of tumor development and may provide multiple novel targets for cancer treatment development

    Artificial gametes: a systematic review of biological progress towards clinical application

    No full text
    BACKGROUND: Recent progress in the formation of artificial gametes, i.e. gametes generated by manipulation of their progenitors or of somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction (MAR). Artificial gametes could potentially help infertile men and women but also post-menopausal women and gay couples conceive genetically related children. This systematic review aimed to provide insight in the progress of biological research towards clinical application of artificial gametes. METHODS: The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading (MesH) terms, and reference lists of eligible studies were hand searched. Studies in English between January 1970 and December 2013 were selected based on meeting a priori defined starting- and end-points of gamete development, including gamete formation, fertilization and the birth of offspring. For each biologically plausible method to form artificial gametes, data were extracted on the potential to generate artificial gametes that might be used to achieve fertilization and to result in the birth of offspring in animals and humans. RESULTS: The systematic search yielded 2424 articles, and 70 studies were included after screening. In animals, artificial sperm and artificial oocytes generated from germline stem cells (GSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have resulted in the birth of viable offspring. Also in animals, artificial sperm and artificial oocytes have been generated from somatic cells directly, i.e. without documentation of intermediate stages of stem- or germ cell development or (epi)genetic status. Finally, although the subsequent embryos showed hampered development, haploidization by transplantation of a somatic cell nucleus into an enucleated donor oocyte has led to fertilized artificial oocytes. In humans, artificial sperm has been generated from ESCs and iPSCs. Artificial human oocytes have been generated from GSCs, ESCs and somatic cells (without documentation of intermediate stages of stem- or germ cell development). Fertilization of a human artificial oocyte after haploidization by transplantation of a somatic cell nucleus into an enucleated donor oocyte was also reported. Normal developmental potential, epigenetic and genetic stability and birth of children has not been reported following the use of human artificial gametes. In animals, artificial oocytes from a male have been created and fertilized and artificial sperm from a female has been fertilized and has resulted in the birth of viable offspring. In humans, artificial sperm has been generated from female iPSCs. To date, no study has reported the birth of human offspring from artificial gametes. CONCLUSION: Our systematic review of the literature indicated that in animals live births have already been achieved using artificial gametes of varying (cell type) sources. Although experimental biological research is progressing steadily towards future clinical application, data on functionality, safety and efficiency of (human) artificial gametes are still preliminary. Although defining artificial gametes by start- and end-points limited the number of included studies, the search resulted in a clear overview of the subject. Clinical use of artificial gametes would expand the treatment possibilities of MAR and would have implications for society. Before potential clinical use, the societal and ethical implications of artificial gametes should be reflected on.status: publishe
    corecore