38 research outputs found

    An experimental realisation of steady spanwise forcing for turbulent drag reduction

    Full text link
    We present an experimental realisation of spatial spanwise forcing in a turbulent boundary layer flow, aimed at reducing the frictional drag. The forcing is achieved by a series of spanwise running belts, running in alternating spanwise direction, thereby generating a steady spatial square-wave forcing. Stereoscopic particle image velocimetry is used to investigate the impact of actuation on the flow in terms of turbulence statistics, performance characteristics, and spanwise velocity profiles, for a waveform of λx+=401\lambda_x^+ = 401. An extension of the classical spatial Stokes layer theory is proposed based on the linear superposition of Fourier modes to describe the non-sinusoidal boundary condition. The experimentally obtained spanwise profiles show good agreement with the extended theoretical model. In line with reported numerical studies, we confirm that a significant flow control effect can be realised with this type of forcing. The results reveal a maximum drag reduction of 26% and a maximum net power savings of 8%. In view of the limited spatial extent of the actuation surface in the current setup, the drag reduction is expected to increase further as a result of its streamwise transient. The second-order turbulence statistics are attenuated up to a wall-normal height of y+≈100y^+ \approx 100, with a maximum streamwise stress reduction of 44% and a reduction of integral turbulence kinetic energy production of 39%

    COVID-19 in health-care workers in three hospitals in the south of the Netherlands: a cross-sectional study

    Get PDF
    Background: 10 days after the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the Netherlands (on Feb 27, 2020), 55 (4%) of 1497 health-care workers in nine hospitals located in the south of the Netherlands had tested positive for SARS-CoV-2 RNA. We aimed to gain insight in possible sources of infection in health-care workers. Methods: We did a cross-sectional study at three of the nine hospitals located in the south of the Netherlands. We screened health-care workers at the participating hospitals for SARS-CoV-2 infection, based on clinical symptoms (fever or mild respiratory symptoms) in the 10 days before screening. We obtained epidemiological data through structured interviews with health-care workers and combined this information with data from whole-genome sequencing of SARS-CoV-2 in clinical samples taken from health-care workers and patients. We did an in-depth analysis of sources and modes of transmission of SARS-CoV-2 in health-care workers and patients. Findings: Between March 2 and March 12, 2020, 1796 (15%) of 12 022 health-care workers were screened, of whom 96 (5%) tested positive for SARS-CoV-2. We obtained complete and near-complete genome sequences from 50 health-care workers and ten patients. Most sequences were grouped in three clusters, with two clusters showing local circulation within the region. The noted patterns were consistent with multiple introductions into the hospitals through community-acquired infections and local amplification in the community. Interpretation: Although direct transmission in the hospitals cannot be ruled out, our data do not support widespread nosocomial transmission as the source of infection in patients or health-care workers. Funding: EU Horizon 2020 (RECoVer, VEO, and the European Joint Programme One Health METASTAVA), and the National Institute of Allergy and Infectious Diseases, National Institutes of Health

    Three-dimensional flow fields and forces on revolving flat plates

    No full text
    The evolution of three-dimensional flow structures of revolving low-aspect-ratio plates in the Reynolds number range of 10,000 to 20,000 was studied, combining Tomographic Particle Image Velocimetry with force measurements. Two motion kinematics were considered: (1) a revolving surge motion where the wing accelerates to a terminal velocity with a constant acceleration at a fixed angle of attack and then remains to revolve at a constant rate; (2) a revolving pitch motion which is initiated by a constant acceleration from rest to a terminal velocity at zero angle of attack, followed by a pitch-up motion at a constant pitch rate and revolution at a constant rate. In the experiments, the terminal velocity, acceleration, angle of attack and pitch rate were varied to study their effect on the resultant flow fields and forces. In general, a vortex system that consists of a leading edge vortex, a tip vortex and a trailing edge vortex is observed. The vortex system bursts into substructures as the motion progresses, which does not lead to a decrease in the forces. The evolution of spanwise flow and the effects of centrifugal acceleration and spanwise pressure gradient are discussed

    Visualization of the structure of vortex breakdown in free swirling jet flow

    No full text
    In this paper we investigate the three dimensional flow structures in a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved Tomographic Particle Image Velocimetry measurements. Both time-averaged and instantaneous flow structures are discussed, including a detailed analysis of the first and second order statistical moments. A Reynolds decomposition of the flow field shows that the time averaged flow is axisymmetric with regions of high anisotropic Reynolds stresses. Two recirculation zones exist with regions of very intensive mixing around them. Despite the axisymmetric nature of the time-averaged flow, a non-axisymmetric structure of the instantaneous flow is revealed, including a central vortex core which breaks up into a double helix. The winding sense of this double helix is opposite to the swirl direction and it is wrapped around the vortex breakdown bubble. The double helix precesses around the central axis of the flow with a precessing frequency corresponding to a Strouhal number of 0.13. To the authors’ knowledge, this structure of vortex breakdown has not been previously reported in the literature to occur for turbulent jet flow and it suggests that the well-known Precessing Vortex Core (PVC) found in swirling jets corresponds to the helical mode of vortex breakdown

    Flow around a suddenly accelerated rotating plate at low Reynoldsnumber

    No full text
    The study explores the evolution of flow field and forces of a low-aspect-ratio flat plate undergoing an accelerated rotating surge motion from rest. The measurements were performed in a water tank at Reynolds numbers of 20,000, based on the chord length and terminal velocity at 75% span. A tomographic Particle Image Velocimetry (Tomographic-PIV) technique was used in order to capture three-dimensional velocity fields at different phases of the rotational motion, in combination with direct force measurements with a six-component water submergible force sensor. Experiments were performed for angles of attack of 30°, 45° and 60°. The results show the temporal development of the generation of lift and drag in conjunction with the development of vortical structures around the wing. The force measurements reveal the temporal variation of the forces during the motion: initial added mass peak at the end of the acceleration phase; subsequent decrease and increase to the maximum with circulatory effects; and decrease to steady state values. Although the general trend is similar for the different angles of attack, the magnitudes and phasing of the circulatory peak differs. Three dimensional flow fields show the evolution of vortical structures, starting from the formation of coherent and well-defined vortices (i.e. leading edge vortex, trailing edge vortex and tip vortex) to a stalled wing flow field with several small-scale structures. The leading edge vortex moves downstream on the top of the wing surface while it bursts into small scale structures. Surprisingly, this bursting and loss of vortex coherence is not reflected in a loss of lift. The spanwise flow structure also changes in accordance with the behavior of vortex formations such that initially it is mostly confined in the cores of leading and trailing edge vortices, however, as the motion progresses, it occurs around the trailing edge

    Asymmetric vortex shedding in the wake of an abruptly expanding annular jet

    No full text
    © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Abstract: In this paper, the structure of the turbulent wake behind the inner tube of a suddenly expanding annular jet flow is studied. The flow field is measured using tomographic particle image velocimetry and analyzed using proper orthogonal decomposition (POD). It was found that both the instantaneous and time-averaged central wakes behind the inner pipe are highly asymmetric despite the axisymmetric structure of the geometry. This asymmetry is the result of a bifurcation at low Reynolds numbers which persists up to the turbulent regime. The asymmetry induces a pair of counter-rotating vortices in the jet which are aligned with the main flow direction. Moreover, the asymmetry also induces a highly dynamical flow field. Analyzing the flow structures using POD shows that the wake oscillates around the asymmetric equilibrium position at a very low Strouhal number in the order of 0.01. On top of this motion, the inner shear layer oscillates with Strouhal numbers in the range of 0.1-0.3. This oscillation causes an asymmetric shedding of vortices of the hairpin type in the inner shear layer. As such, a local asymmetric region of very intensive mixing is induced near the stagnation point. Graphical Abstract: [Figure not available: see fulltext.
    corecore