13 research outputs found

    Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model

    Get PDF
    The objective of the present study was to investigate whether treatment of articular cartilage with hyaluronidase and collagenase enhances histological and mechanical integration of a cartilage graft into a defect. Discs of 3 mm diameter were taken from 8-mm diameter bovine cartilage explants. Both discs and annulus were either treated for 24 hours with 0.1% hyaluronidase followed by 24 hours with 10 U/ml collagenase or left untreated (controls). Discs and annulus were reassembled and implanted subcutaneously in nude mice for 5 weeks. Integration of disc with surrounding cartilage was assessed histologically and tested biomechanically by performing a push-out test. After 5 weeks a significant increase in viable cell counts was seen in wound edges of the enzyme-treated group as compared with controls. Furthermore, matrix integration (expressed as a percentage of the total interface length that was connected; mean ± standard error) was 83 ± 15% in the treated samples versus 44 ± 40% in the untreated controls. In the enzyme-treated group only, picro-Sirius Red staining revealed collagen crossing the interface perpendicular to the wound surface. Immunohistochemical analyses demonstrated that the interface tissue contained cartilage-specific collagen type II. Collagen type I was found only in a small region of fibrous tissue at the level of the superficial layer, and collagen type III was completely absent in both groups. A significant difference in interfacial strength was found using the push-out test: 1.32 ± 0.15 MPa in the enzyme-treated group versus 0.84 ± 0.14 MPa in the untreated controls. The study shows that enzyme treatment of cartilage wounds increases histological integration and improves biomechanical bonding strength. Enzymatic treatment may represent a promising addition to current techniques for articular cartilage repair

    The effect of glucosamine sulphate on osteoarthritis: design of a long-term randomised clinical trial [ISRCTN54513166]

    Get PDF
    BACKGROUND: Pharmacological treatment for osteoarthritis (OA) can be divided into two groups: symptom-modifying drugs and disease-modifying drugs. Symptom-modifying drugs are currently the prescription of choice for patients with OA, as disease-modifying drugs are not yet available in usual care. However, there has recently been a lot of debate about glucosamine sulphate (GS), a biological agent that is thought to have both symptom-modifying and disease-modifying properties. This assumption has yet to be proved. The objective of this article is to present the design of a blind randomised clinical trial that examines the long-term symptom-modifying and disease-modifying effectiveness of GS in patients with hip OA. This trial is ongoing and will finish in March 2006. METHODS/DESIGN: Patients with hip OA meeting the ACR-criteria are randomly allocated to either 1500 mg of oral GS or placebo for the duration of two years. The primary outcome measures, which are joint space narrowing (JSN), and change in the pain and function score of the Western Ontario McMaster Universities Osteoarthritis index (WOMAC), are determined at baseline and after two years of follow-up during the final assessment. Intermediate measures at three-month intervals throughout the trial are used to study secondary outcome measures. Secondary outcome measures are changes in WOMAC stiffness score, quality of life, medical consumption, side effects and differences in biomarker CTX-II

    Oestrogen is important for maintenance of cartilage and subchondral bone in a murine model of knee osteoarthritis

    Get PDF
    Introduction: Oestrogen depletion may influence onset and/or progression of osteoarthritis. We investigated in an ovariectomized mouse model the impact of oestrogen loss and oestrogen supplementation on articular cartilage and subchondral bone in tibia and patella, and assessed bone changes in osteoarthritis development.Methods: C3H/HeJ mice were divided into four groups: sham-operated, oestrogen depletion by ovariectomy (OVX), OVX with estradiol supplementation (OVX+E) and OVX with bisphosphonate (OVX+BP). Each mouse had one knee injected with low-dose iodoacetate (IA), and the contralateral knee was injected with saline. Cartilage was analysed histologically 12 weeks postsurgery; bone changes were monitored over time using in vivo micro-computed tomography.Results: In tibiae, OVX alone failed to induce cartilage damage, but OVX and IA combination significantly induced cartilage damage. In patellae, OVX alone induced significant cartilage damage, whic

    Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study

    Get PDF
    BACKGROUND: Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential. METHODS: Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs). RESULTS: Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but α-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor γ). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations. CONCLUSION: This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis

    A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models

    Get PDF
    BACKGROUND: This study evaluates changes in peri-articular bone in two canine models for osteoarthritis: the groove model and the anterior cruciate ligament transection (ACLT) model. METHODS: Evaluation was performed at 10 and 20 weeks post-surgery and in addition a 3-weeks time point was studied for the groove model. Cartilage was analysed, and architecture of the subchondral plate and trabecular bone of epiphyses was quantified using micro-CT. RESULTS: At 10 and 20 weeks cartilage histology and biochemistry demonstrated characteristic features of osteoarthritis in both models (very mild changes at 3 weeks). The groove model presented osteophytes only at 20 weeks, whereas the ACLT model showed osteophytes already at 10 weeks. Trabecular bone changes in the groove model were small and not consistent. This contrasts the ACLT model in which bone volume fraction was clearly reduced at 10 and 20 weeks (15-20%). However, changes in metaphyseal bone indicate unloading in the ACLT model, not in the groove model. For both models the subchondral plate thickness was strongly reduced (25-40%) and plate porosity was strongly increased (25-85%) at all time points studied. CONCLUSION: These findings show differential regulation of subchondral trabecular bone in the groove and ACLT model, with mild changes in the groove model and more severe changes in the ACLT model. In the ACLT model, part of these changes may be explained by unloading of the treated leg. In contrast, subchondral plate thinning and increased porosity were very consistent in both models, independent of loading conditions, indicating that this thinning is an early response in the osteoarthritis process

    Articular cartilage repair and the evolving role of regenerative medicine

    No full text
    Pieter K Bos1, Marloes L van Melle1, Gerjo JVM van Osch1,21Department of Orthopaedic Surgery, Erasmus MC, Rotterdam, the Netherlands; 2Department of Otorhinolaryngology, Erasmus MC, Rotterdam, the NetherlandsAbstract: Among the growing applications of regenerative medicine, clinical articular cartilage repair has now been used for 2 decades and forms a successful example of translational medicine. Cartilage is characterized by a limited intrinsic repair capacity following injury. Articular cartilage defects cause symptoms, are not spontaneously repaired, and are generally believed to result in early osteoarthritis. Marrow stimulation techniques, osteochondral transplantation, and cell-based therapies, such as autologous chondrocyte implantation (ACI) and use of mesenchymal stem cells (MSCs), are used for tissue regeneration, symptom relief, and prevention of further joint degeneration. The exact incidence of cartilage defects and the natural outcome of joints with these lesions are unclear. Currently available cartilage repair techniques are designed for defect treatment in otherwise healthy joints and limbs, mostly in young adults. The natural history studies presented in this review estimated that the prevalence of cartilage lesions in this patient group ranges from 5% to 11%. The background and results from currently available randomized clinical trials of the three mostly used cartilage repair techniques are outlined in this review. Osteochondral transplantation, marrow stimulation, and ACI show improvement of symptoms with an advantage for cell-based techniques, but only a suggestion that risk for joint degeneration can be reduced. MSCs, characterized by their good proliferative capacity and the potential to differentiate into different mesenchymal lineages, form an attractive alternative cell source for cartilage regeneration. Moreover, MSCs provide a regenerative microenvironment by the secretion of bioactive factors. This trophic activity is believed to limit damage and stimulate intrinsic regenerative responses. Finally, important clinical issues are discussed, including techniques to study the role of implanted cells in tissue regeneration using cell labeling and cell tracking, the improvement of cartilage integration, the use of delayed gadolinium-enhanced magnetic resonance imaging of cartilage for early judgment of joint degeneration/regeneration, and the influence of regulatory rules for therapeutic application development.Keywords: articular cartilage, repair, imaging, technique

    Synovial Fluid Fatty Acid Profiles Differ between Osteoarthritis and Healthy Patients

    No full text
    OBJECTIVE: Free fatty acids (FAs) may influence cartilage metabolism and osteoarthritis (OA) disease progression. It is not clearly studied which FAs are present in the synovial fluid of knee joints and whether there are differences in FA content between nonsymptomatic and OA knee joints. The aim of this study was to investigate the presence of different types of FAs in synovial fluid of both OA- and nonsymptomatic control joints, and to analyze differences between both groups. DESIGN: A total of 23 synovial fluid samples were collected from patients with end-stage knee OA undergoing total knee replacement, with approval of the medical ethical committee. As controls, 6 synovial fluid samples were obtained from postmortem donors without any history of joint disease or arthritis. Measurement of free FA concentration was done by mass spectrometry for saturated FAs (SFA), monounsaturated FAs (MUFA), and omega-3 and omega-6 polyunsaturated FAs (n-3 PUFAs and n-6 PUFAs). RESULTS: Our measurements demonstrated the presence of SFAs, MUFAs, n-3 and n-6 PUFAs in synovial fluid of both nonsymptomatic and OA knee joints. The n-6/n-3 ratio was significantly lower in the OA group (P = 0.0005). Arachidonic acid (n-6 PUFA) concentrations were also lower in OA synovial fluid (P = 0.01), while tetracosadienoic acid (P = 0.0001) and nervonic acid (P = 0.001) (MUFAs) were higher in synovial fluid of patients with knee OA. CONCLUSION: Synovial fluid contains a broad spectrum of free FAs. The FAs profile differs between OA and control subjects, including a tendency for less n-6 FAs in OA joints.status: publishe
    corecore