14 research outputs found

    Recognising Victimhood: Lessons from the International Criminal Court and Mass Claim Programmes for the Compensation Procedure Parallel to the Trial of International Crimes in the Netherlands

    Get PDF
    In the Netherlands, the Dutch criminal court in The Hague (hereinafter: ‘Netherlands International Crimes Court’ or ‘NIC court’) is assigned to try international crimes, and to provide compensation to victims of such crimes. Whereas it has specific criminal laws at its disposal to try international crimes, it applies ‘regular’ Dutch civil law to assess claims for compensation. Yet compensation for international crimes entails challenges that are quite different from domestic crimes: international crimes are normally committed against a large number of victims, and frequently result in bodily harm. This article argues that the NIC court will most likely rule a large number of claims for compensation inadmissible, as a consequence of which victims cannot benefit from the advantages inherent in the award of compensation within the criminal process. It then explores the adjudicative and reparatory standards that the International Criminal Court and mass claim programmes have applied to simplify both the adjudication of a large number of claims, and the calculation of a large number of instances of bodily damage. It is submitted that adoption by the NIC court of international reparatory standards could facilitate the assessment of a large number of civil claims within the criminal process, without prejudice to the legitimate interests of the defendant for an adequate procedure. However, these standards require the NIC court to strike a new balance between tailor-made compensation and symbolic compensation, and thereby between corrective justice and restorative justice

    OrthoList: A Compendium of C. elegans Genes with Human Orthologs

    Get PDF
    C. elegans is an important model for genetic studies relevant to human biology and disease. We sought to assess the orthology between C. elegans and human genes to understand better the relationship between their genomes and to generate a compelling list of candidates to streamline RNAi-based screens in this model.We performed a meta-analysis of results from four orthology prediction programs and generated a compendium, "OrthoList", containing 7,663 C. elegans protein-coding genes. Various assessments indicate that OrthoList has extensive coverage with low false-positive and false-negative rates. Part of this evaluation examined the conservation of components of the receptor tyrosine kinase, Notch, Wnt, TGF-ß and insulin signaling pathways, and led us to update compendia of conserved C. elegans kinases, nuclear hormone receptors, F-box proteins, and transcription factors. Comparison with two published genome-wide RNAi screens indicated that virtually all of the conserved hits would have been obtained had just the OrthoList set (∌38% of the genome) been targeted. We compiled Ortholist by InterPro domains and Gene Ontology annotation, making it easy to identify C. elegans orthologs of human disease genes for potential functional analysis.We anticipate that OrthoList will be of considerable utility to C. elegans researchers for streamlining RNAi screens, by focusing on genes with apparent human orthologs, thus reducing screening effort by ∌60%. Moreover, we find that OrthoList provides a useful basis for annotating orthology and reveals more C. elegans orthologs of human genes in various functional groups, such as transcription factors, than previously described

    Ontplooiing tussen werk en leven

    No full text

    An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth

    No full text
    The Sonic hedgehog (Shh) signalling pathway plays important roles during development and in cancer. Here we report a Shh-induced epigenetic switch that cooperates with Gli to control transcription outcomes. Before induction, poised Shh target genes are marked by a bivalent chromatin domain containing a repressive histone H3K27me3 mark and an active H3K4me3 mark. Shh activation induces a local switch of epigenetic cofactors from the H3K27 methyltransferase polycomb repressive complex 2 (PRC2) to an H3K27me3 demethylase Jmjd3/Kdm6b-centred coactivator complex. We also find that non-enzymatic activities of Jmjd3 are important and that Jmjd3 recruits the Set1/MLL H3K4 methyltransferase complexes in a Shh-dependent manner to resolve the bivalent domain. In vivo, changes of the bivalent domain accompanied Shh-activated cerebellar progenitor proliferation. Overall, our results reveal a regulatory mechanism that underlies the activation of Shh target genes and provides insight into the causes of various diseases and cancers exhibiting altered Shh signalling

    Globularization and Domestication

    Get PDF
    This paper aims to explore a potential connection between two hypotheses recently put forward in the context of language evolution. One hypothesis argues that some human-specific change(s) in the hominin brain developmental program habilitated the neuronal workspace that enabled “cognitive modernity” to unfold, also resulting in our globularized braincase. The other argues that the cultural niche resulting from our self-domestication favored the emergence of natural languages. In this article we document numerous links between the genetic changes we have claimed may have brought about globularization and neural crest cells, which have been claimed to explain the constellation of distinctive traits (physical, cognitive, and behavioral) found in all domesticated mammals. If these links turn out to be as robust as we think they are, globularization and self-domestication may well be closely related phenomena in the context of human evolution.Preparation of this work was supported by funds from the Spanish Ministry of Economy and Competitiveness (Grants FFI2013-43823-P and FFI2014-61888-EXP), as well as funds from a Marie Curie International Reintegration Grant from the European Union (PIRG-GA-2009-256413), research funds from the Fundacio Bosch i Gimpera, and from the Generalitat de Catalunya (2014-SGR-200, and FI-grant)
    corecore