21 research outputs found

    Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    No full text
    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor transport in the MPL and GDL has been investigated. We illustrated how the MPL improved water management in the cathode. Furthermore, it was found that dynamic liquid water transport in the GDL was very sensitive to the built-up thermal gradient along the through-plane direction. Thus, we may control water vapor condensation only along GDL-land interfaces by properly adjusting the GDL thermal conductivity. Our numerical results can provide guidelines for optimizing GDL pore structures for good water management

    Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    No full text
    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor transport in the MPL and GDL has been investigated. We illustrated how the MPL improved water management in the cathode. Furthermore, it was found that dynamic liquid water transport in the GDL was very sensitive to the built-up thermal gradient along the through-plane direction. Thus, we may control water vapor condensation only along GDL-land interfaces by properly adjusting the GDL thermal conductivity. Our numerical results can provide guidelines for optimizing GDL pore structures for good water management

    Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    No full text
    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor transport in the MPL and GDL has been investigated. We illustrated how the MPL improved water management in the cathode. Furthermore, it was found that dynamic liquid water transport in the GDL was very sensitive to the built-up thermal gradient along the through-plane direction. Thus, we may control water vapor condensation only along GDL-land interfaces by properly adjusting the GDL thermal conductivity. Our numerical results can provide guidelines for optimizing GDL pore structures for good water management

    Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors

    No full text
    The measurement of fluid pressure inside pores is a major challenge in experimental studies of two-phase flow in porous media. In this paper, we describe the manufacturing procedure of a micro-model with integrated fibre optic pressure sensors. They have a circular measurement window with a diameter of 260Ī¼m , which enables the measurement of pressure at the pore scale. As a porous medium, we used a PDMS micro-model with known physical and surface properties. A given pore geometry was produced following a procedure we had developed earlier. We explain the technology behind fibre optic pressure sensors and the procedure for integrating these sensors into a micro-model and demonstrate their utility for the measurement of pore pressure under transient two-phase flow conditions. Finally, we present and analyse results of single and two-phase flow experiments performed in the micro-model and discuss the link between small-scale fast pressure changes with pore-scale events

    Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors

    No full text
    The measurement of fluid pressure inside pores is a major challenge in experimental studies of two-phase flow in porous media. In this paper, we describe the manufacturing procedure of a micro-model with integrated fibre optic pressure sensors. They have a circular measurement window with a diameter of 260Ī¼m , which enables the measurement of pressure at the pore scale. As a porous medium, we used a PDMS micro-model with known physical and surface properties. A given pore geometry was produced following a procedure we had developed earlier. We explain the technology behind fibre optic pressure sensors and the procedure for integrating these sensors into a micro-model and demonstrate their utility for the measurement of pore pressure under transient two-phase flow conditions. Finally, we present and analyse results of single and two-phase flow experiments performed in the micro-model and discuss the link between small-scale fast pressure changes with pore-scale events

    Effect of suspended clay on growth rates of the cyanobacterium Cylindrospermopsis raciborskii

    No full text
    Recent studies have shown that sediment resuspension may lead to the collapse of C. raciborskii dominance, which suggests that clay might have a negative effect on the growth of C. raciborskii. To test the hypothesis that suspended clay creates an unfavorable environment for growth of C. raciborskii, we exposed four different strains of this species to various concentrations of the clays kaolinite and bentonite, and monitored the biomass of each strain over the course of 1-week microcosm experiments. Contrary to our hypothesis, C. raciborskii was able to grow in suspensions of both clays. While kaolinite clay caused higher turbidity than bentonite, the growth rates of all four C. raciborskii strains were higher in kaolinite than in bentonite suspensions. C. raciborskii could still grow in clay concentrations that cause turbidity far above the levels found in natural lakes. Our study suggests that the reported collapse of C. raciborskii blooms with high concentrations of suspended sediments in tropical shallow lakes is probably not caused by the effects of suspended clay on light attenuation, but rather is a consequence of cell sinking or, possibly a response to disturbance events responsible for sediment suspension

    Critical assessment of chitosan as coagulant to remove cyanobacteria

    No full text
    Removal of cyanobacteria from the water column using a coagulant and a ballast compound is a promising technique to mitigate nuisance. As coagulant the organic, biodegradable polymer chitosan has been promoted. Results in this study show that elevated pH, as may be common during cyanobacterial blooms, as well as high alkalinity may hamper the coagulation of chitosan and thus impair its ability to effectively remove positively buoyant cyanobacteria from the water column. The underlying mechanism is likely a shielding of the protonated groups by anions. Inasmuch as there are many chitosan formulations, thorough testing of each chitosan prior to its application is essential. Results obtained in glass tubes were similar to those from standard jar tests demonstrating that glass tube tests can be used for testing effects of coagulants and ballasts in cyanobacteria removal whilst allowing far more replicates. There was no relation between zeta potential and precipitated cyanobacteria. Given the well-known antibacterial activity of chitosan and recent findings of anti-cyanobacterial effects, pre-application tests are needed to decipher if chitosan may cause cell leakage of cyanotoxins. Efficiency- and side-effect testing are crucial for water managers to determine if the selected approach can be used in tailor-made interventions to control cyanobacterial blooms and to mitigate eutrophication

    Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay

    No full text
    Abstract Eutrophication often results in blooms of toxic cyanobacteria that hamper the use of lakes and reservoirs. In this paper, we experimentally evaluated the efficacy of a metal salt (poly-aluminium chloride, PAC) and chitosan, alone and combined with different doses of the lanthanum modified bentonite PhoslockĀ® (LMB) or local red soil (LRS) to sediment positively buoyant cyanobacteria from Funil Reservoir, Brazil, (22Ā°30ā€²S, 44Ā°45ā€²W). We also tested the effect of calcium peroxide (CaO2) on suspended and settled cyanobacterial photosystem efficiency, and evaluated the soluble reactive P (SRP) adsorbing capacity of both LMB and LRS under oxic and anoxic conditions. Our data showed that buoyant cyanobacteria could be flocked and effectively precipitated using a combination of PAC or chitosan with LMB or LRS. The SRP sorption capacity of LMB was higher than that of LRS. The maximum P adsorption was lowered under anoxic conditions especially for LRS ballast. CaO2 addition impaired photosystem efficiency at 1Ā mgĀ Lāˆ’1 or higher and killed precipitated cyanobacteria at 4Ā mgĀ Lāˆ’1 or higher. A drawback was that oxygen production from the peroxide gave positive buoyancy again to the settled flocs. Therefore, further experimentations with slow release pellets are recommended

    Coagulation and precipitation of cyanobacterial blooms

    No full text
    Eutrophication is the prime water quality issue in inland waters. Eutrophication and its key symptom, harmful cyanobacterial blooms, is expected to further increase in the future, which highlights the importance of managing the issue. The reduction of external nutrient load is crucial but might not bring fast relief to eutrophic waters due to ongoing diffuse pollution and legacy nutrients in the sediment. In this context, in-lake measures are needed to speed-up recovery. In this review, we discuss different in-lake measures based on coagulation and precipitation of cyanobacteria and/or phosphate for different lake categories (e.g., shallow or deep, mainly external or internal nutrient load, occurrence of perennial or summer blooms). In deep lakes with an external nutrient load higher than the internal load, a ā€œFloc and Sinkā€ method could be used in which a coagulant (e.g. aluminium salts, Al-salts; chitosan) combined with a ballast (e.g. soil, clay) removes a cyanobacterial bloom out of the water column. In case the deep lake suffers from high internal load, a phosphate (P)-fixative (e.g. lanthanum modified bentonite or Al-salts) can be used to ā€œLockā€ the legacy P, possibly combined with a coagulant ā€“ a ā€œFloc and Lockā€ technique. The latter approach will target both the particulate P in a bloom and the internal P load. A shallow lake that suffers from summer blooms and in which the internal load is higher than the external load, a ā€œLockā€ strategy of winter application of a P-fixative is proposed to prevent bloom development. In shallow lakes with perennial blooms, an agent to damage the cells (such as H2O2) is required together with a coagulant and a ballast to avoid recolonization of the water column due to resuspension ā€“ a ā€œKill, Floc and Sink/Lockā€ method. The selection of the most promising in-lake measures and materials should be based on a proper system diagnosis and tests prior to a full-scale intervention. These methods can be effective, but evidently reduction of external nutrient loads, both from point- and non-pointed sources, is an absolute necessity to restore aquatic ecosystems in a holistic sense
    corecore