14 research outputs found

    Management of latent Mycobacterium tuberculosis infection:WHO guidelines for low tuberculosis burden countries

    Get PDF
    ABSTRACT Latent tuberculosis infection (LTBI) is characterised by the presence of immune responses to previously acquired Mycobacterium tuberculosis infection without clinical evidence of active tuberculosis (TB). Here we report evidence-based guidelines from the World Health Organization for a public health approach to the management of LTBI in high risk individuals in countries with high or middle upper income and TB incidence of <100 per 100000 per year. The guidelines strongly recommend systematic testing and treatment of LTBI in people living with HIV, adult and child contacts of pulmonary TB cases, patients initiating anti-tumour necrosis factor treatment, patients receiving dialysis, patients preparing for organ or haematological transplantation, and patients with silicosis. In prisoners, healthcare workers, immigrants from high TB burden countries, homeless persons and illicit drug users, systematic testing an

    Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors

    No full text
    The measurement of fluid pressure inside pores is a major challenge in experimental studies of two-phase flow in porous media. In this paper, we describe the manufacturing procedure of a micro-model with integrated fibre optic pressure sensors. They have a circular measurement window with a diameter of 260μm , which enables the measurement of pressure at the pore scale. As a porous medium, we used a PDMS micro-model with known physical and surface properties. A given pore geometry was produced following a procedure we had developed earlier. We explain the technology behind fibre optic pressure sensors and the procedure for integrating these sensors into a micro-model and demonstrate their utility for the measurement of pore pressure under transient two-phase flow conditions. Finally, we present and analyse results of single and two-phase flow experiments performed in the micro-model and discuss the link between small-scale fast pressure changes with pore-scale events

    Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors

    No full text
    The measurement of fluid pressure inside pores is a major challenge in experimental studies of two-phase flow in porous media. In this paper, we describe the manufacturing procedure of a micro-model with integrated fibre optic pressure sensors. They have a circular measurement window with a diameter of 260μm , which enables the measurement of pressure at the pore scale. As a porous medium, we used a PDMS micro-model with known physical and surface properties. A given pore geometry was produced following a procedure we had developed earlier. We explain the technology behind fibre optic pressure sensors and the procedure for integrating these sensors into a micro-model and demonstrate their utility for the measurement of pore pressure under transient two-phase flow conditions. Finally, we present and analyse results of single and two-phase flow experiments performed in the micro-model and discuss the link between small-scale fast pressure changes with pore-scale events

    Design, development and clinical translation of CriPec®-based core-crosslinked polymeric micelles

    No full text
    Nanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLacn) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM). Key features of CCPM are a prolonged circulation time, high concentrations at pathological sites, and low levels of accumulation in the majority of healthy tissues. Proprietary hydrolysable linkers allow for tunable and sustained release of entrapped API, including hydrophobic and hydrophilic small molecules, as well as peptides and oligonucleotides. Preclinical imaging experiments provided valuable information on their tumor and tissue accumulation and distribution, as well as on uptake by cancer, healthy and immune cells. The frontrunner formulation CPC634, which refers to 65 nm-sized CCPM entrapping the chemotherapeutic drug docetaxel, showed excellent pharmacokinetic properties, safety, tumor accumulation and antitumor efficacy in multiple animal models. In the clinic, CPC634 also demonstrated favorable pharmacokinetics, good tolerability, signs of efficacy, and enhanced localization in tumor tissue as compared to conventional docetaxel. PET imaging of radiolabeled CPC634 showed quantifiable accumulation in ∼50 % of tumors and metastases in advanced-stage cancer patients, and demonstrated potential for use in a theranostic setting even when applied at a companion diagnostic dose. Altogether, the preclinical and clinical results obtained to date demonstrate that mPEG-b-pHPMAmLacn CCPM based on CriPec® technology are a potent, tunable, broadly applicable and well-tolerable platform for targeted drug delivery and improved anticancer therapy

    Design, development and clinical translation of CriPec®-based core-crosslinked polymeric micelles

    No full text
    Nanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLacn) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM). Key features of CCPM are a prolonged circulation time, high concentrations at pathological sites, and low levels of accumulation in the majority of healthy tissues. Proprietary hydrolysable linkers allow for tunable and sustained release of entrapped API, including hydrophobic and hydrophilic small molecules, as well as peptides and oligonucleotides. Preclinical imaging experiments provided valuable information on their tumor and tissue accumulation and distribution, as well as on uptake by cancer, healthy and immune cells. The frontrunner formulation CPC634, which refers to 65 nm-sized CCPM entrapping the chemotherapeutic drug docetaxel, showed excellent pharmacokinetic properties, safety, tumor accumulation and antitumor efficacy in multiple animal models. In the clinic, CPC634 also demonstrated favorable pharmacokinetics, good tolerability, signs of efficacy, and enhanced localization in tumor tissue as compared to conventional docetaxel. PET imaging of radiolabeled CPC634 showed quantifiable accumulation in ∼50 % of tumors and metastases in advanced-stage cancer patients, and demonstrated potential for use in a theranostic setting even when applied at a companion diagnostic dose. Altogether, the preclinical and clinical results obtained to date demonstrate that mPEG-b-pHPMAmLacn CCPM based on CriPec® technology are a potent, tunable, broadly applicable and well-tolerable platform for targeted drug delivery and improved anticancer therapy

    Molecular imaging predicts lack of T-DM1 response in advanced HER2-positive breast cancer (final results of ZEPHIR trial)

    No full text
    Abstract: Efficacy of the human epidermal growth factor receptor (HER)2-targeting trastuzumab emtansine (T-DM1) in breast cancer (BC) relies on HER2 status determined by immunohistochemistry or fluorescence in-situ hybridization. Heterogeneity in HER2 expression, however, generates interest in "whole-body" assessment of HER2 status using molecular imaging. We evaluated the role of HER2-targeted molecular imaging in detecting HER2-positive BC lesions and patients unlikely to respond to T-DM1. Patients underwent zirconium-89 (Zr-89) trastuzumab (HER2) PET/CT and [F-18]-2-fluoro-2-deoxy-D-glucose (FDG) PET/CT before T-DM1 initiation. Based on Zr-89-trastuzumab uptake, lesions were visually classified as HER2-positive (visible/high uptake) or HER2-negative (background/close to background activity). According to proportion of FDG-avid tumor load showing Zr-89-trastuzumab uptake (entire/dominant part or minor/no part), patients were classified as HER2-positive and HER2-negative, respectively. Out of 265 measurable lesions, 93 (35%) were HER2-negative, distributed among 42 of the 90 included patients. Of these, 18 (19%) lesions belonging to 11 patients responded anatomically (>30% decrease in axial diameter from baseline) after three T-DM1 cycles, resulting in an 81% negative predictive value (NPV) of the HER2 PET/CT. In combination with early metabolic response assessment on FDG PET/CT performed before the second T-DM1 cycle, NPVs of 91% and 100% were reached in predicting lesion-based and patient-based (RECIST1.1) response, respectively. Therefore, HER2 PET/CT, alone or in combination with early FDG PET/CT, can successfully identify BC lesions and patients with a low probability of clinical benefit from T-DM1

    Design, development and clinical translation of CriPec®-based core-crosslinked polymeric micelles

    No full text
    Nanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLacn) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM). Key features of CCPM are a prolonged circulation time, high concentrations at pathological sites, and low levels of accumulation in the majority of healthy tissues. Proprietary hydrolysable linkers allow for tunable and sustained release of entrapped API, including hydrophobic and hydrophilic small molecules, as well as peptides and oligonucleotides. Preclinical imaging experiments provided valuable information on their tumor and tissue accumulation and distribution, as well as on uptake by cancer, healthy and immune cells. The frontrunner formulation CPC634, which refers to 65 nm-sized CCPM entrapping the chemotherapeutic drug docetaxel, showed excellent pharmacokinetic properties, safety, tumor accumulation and antitumor efficacy in multiple animal models. In the clinic, CPC634 also demonstrated favorable pharmacokinetics, good tolerability, signs of efficacy, and enhanced localization in tumor tissue as compared to conventional docetaxel. PET imaging of radiolabeled CPC634 showed quantifiable accumulation in ∼50 % of tumors and metastases in advanced-stage cancer patients, and demonstrated potential for use in a theranostic setting even when applied at a companion diagnostic dose. Altogether, the preclinical and clinical results obtained to date demonstrate that mPEG-b-pHPMAmLacn CCPM based on CriPec® technology are a potent, tunable, broadly applicable and well-tolerable platform for targeted drug delivery and improved anticancer therapy

    89Zr]Zr-DFO-girentuximab and [18F]FDG PET/CT to Predict Watchful Waiting Duration in Patients with Metastatic Clear-cell Renal Cell Carcinoma

    No full text
    PURPOSE: Watchful waiting (WW) can be considered for patients with metastatic clear-cell renal cell carcinoma (mccRCC) with good or intermediate prognosis, especially those with <2 International Metastatic RCC Database Consortium criteria and ≤2 metastatic sites [referred to as watch and wait ("W&W") criteria]. The IMaging PAtients for Cancer drug SelecTion-Renal Cell Carcinoma study objective was to assess the predictive value of [18F]FDG PET/CT and [89Zr]Zr-DFO-girentuximab PET/CT for WW duration in patients with mccRCC. EXPERIMENTAL DESIGN: Between February 2015 and March 2018, 48 patients were enrolled, including 40 evaluable patients with good (n = 14) and intermediate (n = 26) prognosis. Baseline contrast-enhanced CT, [18F]FDG and [89Zr]Zr-DFO-girentuximab PET/CT were performed. Primary endpoint was the time to disease progression warranting systemic treatment. Maximum standardized uptake values (SUVmax) were measured using lesions on CT images coregistered to PET/CT. High and low uptake groups were defined on the basis of median geometric mean SUVmax of RECIST-measurable lesions across patients. RESULTS: The median WW time was 16.1 months [95% confidence interval (CI): 9.0-31.7]. The median WW period was shorter in patients with high [18F]FDG tumor uptake than those with low uptake (9.0 vs. 36.2 months; HR, 5.6; 95% CI: 2.4-14.7; P < 0.001). Patients with high [89Zr]Zr-DFO-girentuximab tumor uptake had a median WW period of 9.3 versus 21.3 months with low uptake (HR, 1.7; 95% CI: 0.9-3.3; P = 0.13). Patients with "W&W criteria" had a longer median WW period of 21.3 compared with patients without: 9.3 months (HR, 1.9; 95% CI: 0.9-3.9; Pone-sided = 0.034). Adding [18F]FDG uptake to the "W&W criteria" improved the prediction of WW duration (P < 0.001); whereas [89Zr]Zr-DFO-girentuximab did not (P = 0.53). CONCLUSIONS: In patients with good- or intermediate-risk mccRCC, low [18F]FDG uptake is associated with prolonged WW. This study shows the predictive value of the "W&W criteria" for WW duration and shows the potential of [18F]FDG-PET/CT to further improve this
    corecore