50 research outputs found

    Cartilage intermediate layer protein 1 (CILP1): a novel mediator of cardiac extracellular matrix remodelling

    Get PDF
    Heart failure is accompanied by extracellular matrix (ECM) remodelling, often leading to cardiac fibrosis. In the present study we explored the significance of cartilage intermediate layer protein 1 (CILP1) as a novel mediator of cardiac ECM remodelling. Whole genome transcriptional analysis of human cardiac tissue samples revealed a strong association of CILP1 with many structural (e.g. COL1A2 r2¿=¿0.83) and non-structural (e.g. TGFB3 r2¿=¿0.75) ECM proteins. Gene enrichment analysis further underscored the involvement of CILP1 in human cardiac ECM remodelling and TGFß signalling. Myocardial CILP1 protein levels were significantly elevated in human infarct tissue and in aortic valve stenosis patients. CILP1 mRNA levels markedly increased in mouse heart after myocardial infarction, transverse aortic constriction, and angiotensin II treatment. Cardiac fibroblasts were found to be the primary source of cardiac CILP1 expression. Recombinant CILP1 inhibited TGFß-induced ¿SMA gene and protein expression in cardiac fibroblasts. In addition, CILP1 overexpression in HEK293 cells strongly (5-fold p¿<¿0.05) inhibited TGFß signalling activity. In conclusion, our study identifies CILP1 as a new cardiac matricellular protein interfering with pro-fibrotic TGFß signalling, and as a novel sensitive marker for cardiac fibrosis

    Heart-type Fatty acid-binding protein in Acute Myocardial infarction Evaluation (FAME): Background and design of a diagnostic study in primary care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently used biomarkers for cardiac ischemia are elevated in blood plasma after a delay of several hours and therefore unable to detect acute coronary syndrome (ACS) in a very early stage. General practitioners (GPs), however, are often confronted with patients suspected of ACS within hours after onset of complaints. This ongoing study aims to evaluate the added diagnostic value beyond clinical assessment for a rapid bedside test for heart-type fatty-acid binding protein (H-FABP), a biomarker that is detectable as soon as one hour after onset of ischemia.</p> <p>Methods</p> <p>Participating GPs perform a blinded H-FABP rapid bedside test (Cardiodetect<sup>®</sup>) in patients with symptoms suggestive of ACS such as chest pain or discomfort at rest. All patients, whether referred to hospital or not, undergo electrocardiography (ECG) and venapunction for a plasma troponin test within 12–36 hours after onset of complaints. A final diagnosis will be established by an expert panel consisting of two cardiologists and one general practitioner (blinded to the H-FABP test result), using all available patient information, also including signs and symptoms. The added diagnostic value of the H-FABP test beyond history taking and physical examination will be determined with receiver operating characteristic curves derived from multivariate regression analysis.</p> <p>Conclusion</p> <p>Reasons for presenting the design of our study include the prevention of publication bias and unacknowledged alterations in the study aim, design or data-analysis. To our knowledge this study is the first to assess the diagnostic value of H-FABP <it>outside </it>a hospital-setting. Several previous hospital-based studies showed the potential value of H-FABP in diagnosing ACS. Up to now however it is unclear whether these results are equally promising when the test is used in primary care. The first results are expected in the end of 2008.</p

    The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy

    Get PDF
    BACKGROUND: In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. METHODS/PRINCIPAL FINDINGS: VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32), macular hole (N = 13) or macular pucker (N = 23) and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4) were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. CONCLUSIONS/SIGNIFICANCE: CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy

    The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction

    No full text
    Cardiac fibroblasts (CF) play a pivotal role in the repair and remodeling of the heart that occur following myocardial infarction (MI). The transition through the inflammatory, granulation and maturation phases of infarct healing is driven by cellular responses to local levels of cytokines, chemokines and growth factors that fluctuate in a temporal and spatial manner. In the acute inflammatory phase early after MI, CF contribute to the inflammatory milieu through increased secretion of proinflammatory cytokines and chemokines, and they promote extracellular matrix (ECM) degradation by increasing matrix metalloproteinase (MMP) expression and activity. In the granulation phase, CF migrate into the infarct zone, proliferate and produce MMPs and pro-angiogenic molecules to facilitate revascularization. Fibroblasts also undergo a phenotypic change to become myofibroblasts. In the maturation phase, inflammation is reduced by anti-inflammatory cytokines, and increased levels of profibrotic stimuli induce myofibroblasts to synthesize new ECM to form a scar. The scar is contracted through the mechanical force generated by myofibroblasts, preventing cardiac dilation. In this review we discuss the transition from myocardial inflammation to fibrosis with particular focus on how CF respond to alterations in proinflammatory and profibrotic signals. By furthering our understanding of these events, it is hoped that new therapeutic interventions will be developed that selectively reduce adverse myocardial remodeling post-MI, while sparing essential repair mechanisms

    Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts

    No full text
    In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p 20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts

    Plasma Extracellular Vesicles as Liquid Biopsy to Unravel the Molecular Mechanisms of Cardiac Reverse Remodeling Following Resynchronization Therapy?

    No full text
    Cardiac resynchronization therapy (CRT) has become a valuable addition to the treatment options for heart failure, in particular for patients with disturbances in electrical conduction that lead to regionally different contraction patterns (dyssynchrony). Dyssynchronous hearts show extensive molecular and cellular remodeling, which has primarily been investigated in experimental animals. Evidence showing that at least several miRNAs play a role in this remodeling is increasing. A comparison of results from measurements in plasma and myocardial tissue suggests that plasma levels of miRNAs may reflect the expression of these miRNAs in the heart. Because many miRNAs released in the plasma are included in extracellular vesicles (EVs), which protect them from degradation, measurement of myocardium-derived miRNAs in peripheral blood EVs may open new avenues to investigate and monitor (reverse) remodeling in dyssynchronous and resynchronized hearts of patients

    Cartilage intermediate layer protein 1 (CILP1):A novel mediator of cardiac extracellular matrix remodelling

    No full text
    Abstract Heart failure is accompanied by extracellular matrix (ECM) remodelling, often leading to cardiac fibrosis. In the present study we explored the significance of cartilage intermediate layer protein 1 (CILP1) as a novel mediator of cardiac ECM remodelling. Whole genome transcriptional analysis of human cardiac tissue samples revealed a strong association of CILP1 with many structural (e.g. COL1A2 r2 = 0.83) and non-structural (e.g. TGFB3 r2 = 0.75) ECM proteins. Gene enrichment analysis further underscored the involvement of CILP1 in human cardiac ECM remodelling and TGFβ signalling. Myocardial CILP1 protein levels were significantly elevated in human infarct tissue and in aortic valve stenosis patients. CILP1 mRNA levels markedly increased in mouse heart after myocardial infarction, transverse aortic constriction, and angiotensin II treatment. Cardiac fibroblasts were found to be the primary source of cardiac CILP1 expression. Recombinant CILP1 inhibited TGFβ-induced αSMA gene and protein expression in cardiac fibroblasts. In addition, CILP1 overexpression in HEK293 cells strongly (5-fold p < 0.05) inhibited TGFβ signalling activity. In conclusion, our study identifies CILP1 as a new cardiac matricellular protein interfering with pro-fibrotic TGFβ signalling, and as a novel sensitive marker for cardiac fibrosis
    corecore