3,513 research outputs found

    Ultralong-range order in the Fermi-Hubbard model with long-range interactions

    Full text link
    We use the dual boson approach to reveal the phase diagram of the Fermi-Hubbard model with long-range dipole-dipole interactions. By using a large-scale finite-temperature calculation on a 64×6464 \times 64 square lattice we demonstrate the existence of a novel phase, possessing an `ultralong-range' order. The fingerprint of this phase -- the density correlation function -- features a non-trivial behavior on a scale of tens of the lattice sites. We study the properties and the stability of the ultralong-range ordered phase, and show that it is accessible in modern experiments with ultracold polar molecules and magnetic atoms

    Ice chemistry in massive Young Stellar Objects: the role of metallicity

    Full text link
    We present the comparison of the three most important ice constituents (water, CO and CO2) in the envelopes of massive Young Stellar Objects (YSOs), in environments of different metallicities: the Galaxy, the Large Magellanic Cloud (LMC) and, for the first time, the Small Magellanic Cloud (SMC). We present observations of water, CO and CO2 ice in 4 SMC and 3 LMC YSOs (obtained with Spitzer-IRS and VLT/ISAAC). While water and CO2 ice are detected in all Magellanic YSOs, CO ice is not detected in the SMC objects. Both CO and CO2 ice abundances are enhanced in the LMC when compared to high-luminosity Galactic YSOs. Based on the fact that both species appear to be enhanced in a consistent way, this effect is unlikely to be the result of enhanced CO2 production in hotter YSO envelopes as previously thought. Instead we propose that this results from a reduced water column density in the envelopes of LMC YSOs, a direct consequence of both the stronger UV radiation field and the reduced dust-to-gas ratio at lower metallicity. In the SMC the environmental conditions are harsher, and we observe a reduction in CO2 column density. Furthermore, the low gas-phase CO density and higher dust temperature in YSO envelopes in the SMC seem to inhibit CO freeze-out. The scenario we propose can be tested with further observations.Comment: accepted by MNRAS Letters; 5 pages, 3 figures, 1 tabl

    The M33 Variable Star Population Revealed by Spitzer

    Full text link
    We analyze five epochs of Spitzer Space Telescope/Infrared Array Camera (IRAC) observations of the nearby spiral galaxy M33. Each epoch covered nearly a square degree at 3.6, 4.5, and 8.0 microns. The point source catalog from the full dataset contains 37,650 stars. The stars have luminosities characteristic of the asymptotic giant branch and can be separated into oxygen-rich and carbon-rich populations by their [3.6] - [4.5] colors. The [3.6] - [8.0] colors indicate that over 80% of the stars detected at 8.0 microns have dust shells. Photometric comparison of epochs using conservative criteria yields a catalog of 2,923 variable stars. These variables are most likely long-period variables amidst an evolved stellar population. At least one-third of the identified carbon stars are variable.Comment: Accepted for publication in ApJ. See published article for full resolution figures and electronic table

    Two-particle correlations and the metal-insulator transition: Iterated Perturbation Theory revisited

    Full text link
    Recent advances in many-body physics have made it possible to study correlated electron systems at the two-particle level. In Dynamical Mean-Field theory, it has been shown that the metal-insulator phase diagram is closely related to the eigenstructure of the susceptibility. So far, this situation has been studied using accurate but numerically expensive solvers. Here, the Iterated Perturbation Theory (IPT) approximation is used instead. Its simplicity makes it possible to obtain analytical results for the two-particle vertex and the DMFT Jacobian. The limited computational cost also enables a detailed comparison of analytical expressions for the response functions to results obtained using finite differences. At the same time, the approximate nature of IPT precludes an interpretation of the metal-insulator transition in terms of a Landau free energy functional.Comment: Revised versio
    • …
    corecore