6 research outputs found
Development of methods for the determination of pKa values
The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field
Nanostructured supramolecular block copolymers based on polydimethylsiloxane and polylactide
Hierarchical self-assembly has been demonstrated with diblock copolymers comprising poly(dimethylsiloxane) (PDMS) and poly(lactide) (PLA) with supramolecular, 4-fold hydrogen-bonding junctions. PDMS with a single ureidoguanosine unit at the end was synthesized by a postpolymerization strategy. PLA with a single 1,7-diamidonaphthyridine was synthesized by ring-opening polymerization from the appropriate functional initiator. Selective association of the end groups to form distinct, noncovalent connections between the respective homopolymers in blends was established by H-1 NMR spectroscopy. The orthogonal self-assembly of the resulting pseudoblock copolymer, driven by immiscibility between the polymer constituents was demonstrated. Bulk polymer blends were prepared that have approximately symmetric composition and a 1:1 end-group stoichiometry. Small angle X-ray scattering combined with differential scanning calorimetry and transmission electron microscopy provide unambiguous evidence for the adoption of a lamellar morphology having long-range order, nanoscopic domain dimensions (20 nm pitch), and a sharp domain interface defined by the supramolecular building blocks
Nanostructured supramolecular block copolymers based on polydimethylsiloxane and polylactide
Hierarchical self-assembly has been demonstrated with diblock copolymers comprising poly(dimethylsiloxane) (PDMS) and poly(lactide) (PLA) with supramolecular, 4-fold hydrogen-bonding junctions. PDMS with a single ureidoguanosine unit at the end was synthesized by a postpolymerization strategy. PLA with a single 1,7-diamidonaphthyridine was synthesized by ring-opening polymerization from the appropriate functional initiator. Selective association of the end groups to form distinct, noncovalent connections between the respective homopolymers in blends was established by H-1 NMR spectroscopy. The orthogonal self-assembly of the resulting pseudoblock copolymer, driven by immiscibility between the polymer constituents was demonstrated. Bulk polymer blends were prepared that have approximately symmetric composition and a 1:1 end-group stoichiometry. Small angle X-ray scattering combined with differential scanning calorimetry and transmission electron microscopy provide unambiguous evidence for the adoption of a lamellar morphology having long-range order, nanoscopic domain dimensions (20 nm pitch), and a sharp domain interface defined by the supramolecular building blocks