88 research outputs found

    Seafarer fatigue: a review of risk factors, consequences for seafarers’ health and safety and options for mitigation

    Get PDF
    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating to seafarer fatigue. Materials and methods: A literature study was conducted aiming to collect publications that address risk factors for fatigue, short-term and long-term consequences for health and safety, and options for fatigue mitigation at sea. Due to the limited number of publications that deals with seafarers, experiences from other populations sharing the same exposures (e.g. shift work) were also included when appropriate. Results: Work at sea involves multiple risk factors for fatigue, which in addition to acute effects (e.g., impaired cognition, accidents) contributes through autonomic, immunologic and metabolic pathways to the development of chronic diseases that are particularly prevalent in seafarers. Conclusions: Taking into account the frequency of seafarer fatigue and the severity of its consequences, one should look into the efficacy of the current legislative framework and the industry’s compliance, the manning of the international merchant fleet, and optimised working, living and sleeping conditions at sea. Considering circumstances at sea, e.g. working in shifts and crossing time zones, that cannot be altered, further assessment of the potentials of preventive interventions including fatigue prediction tools and individual fatigue mitigation management systems is recommended.

    Identification of the stress granule transcriptome via RNA-editing in single cells and in vivo

    Get PDF
    Stress granules are phase-separated assemblies formed around RNAs. So far, the techniques available to identify these RNAs are not suitable for single cells and small tissues displaying cell heterogeneity. Here, we used TRIBE (target of RNA-binding proteins identified by editing) to profile stress granule RNAs. We used an RNA-binding protein (FMR1) fused to the catalytic domain of an RNA-editing enzyme (ADAR), which coalesces into stress granules upon oxidative stress. RNAs colocalized with this fusion are edited, producing mutations that are detectable by VASA sequencing. Using single-molecule FISH, we validated that this purification-free method can reliably identify stress granule RNAs in bulk and single S2 cells and in Drosophila neurons. Similar to mammalian cells, we find that stress granule mRNAs encode ATP binding, cell cycle, and transcription factors. This method opens the possibility to identify stress granule RNAs and other RNA-based assemblies in other single cells and tissues

    Impact of work exposure on cognitive performance in Faroese deep-sea fishers: a field study

    Get PDF
    Background: This study examines the impact of work-related exposure on the cognitive performance of Faroese deep-sea fishers. Faroese fishing crews work long hours in demanding and noisy environments amidst highly uncertain and challenging weather conditions. These factors, together with compromised patterns of rest and sleep, are known to increase fatigue. Our aim was to study if changes could be measured in fishers’ cognitive performance at the end of the trip when compared with the baseline measure at the beginning. Materials and methods: Data was collected over 15 months (May 2017 to July 2018) from 157 fishers on 18 fishing trips which involved 202 investigative days on board. Questionnaires and six computerised cognitive tests: Simple Reaction Time, Numeric Working Memory, Corsi Blocks, Rapid Visual Information Processing, Digit Vigilance, and Card Sorting Test were used for data collection at the beginning and end of the trip. Differences between the outcomes on the two test points were analysed with one-way ANOVA comparing the performances at the beginning and end of the voyage, and two-way ANOVA to examine the interactive effect of chronotype and test occasions on the outcomes. Mixed models were used to test for the effects of predictor variables. Results: Significant declines in cognitive performance were observed from the beginning to the end of the trip, with decreases in visuospatial memory and reaction times, and increases in cognitive lapses. Furthermore, slowing in response times was observed in the second half of the Digit Vigilance test when comparing the halves. Conclusions: Declines in performance were observed from the start to the end of the trip. Furthermore, fishers performed significantly worse in the second half of some parted tests, and evening types seem less influenced by irregular work hours. These findings call for improving the safety of the vessels and their crew

    Activation of IRE1, PERK and salt-inducible kinases leads to Sec body formation in Drosophila S2 cells

    Get PDF
    The phase separation of the non-membrane bound Sec bodies occurs in Drosophila S2 cells by coalescence of components of the endoplasmic reticulum (ER) exit sites under the stress of amino acid starvation. Here, we address which signaling pathways cause Sec body formation and find that two pathways are critical. The first is the activation of the salt-inducible kinases (SIKs; SIK2 and SIK3) by Na(+) stress, which, when it is strong, is sufficient. The second is activation of IRE1 and PERK (also known as PEK in flies) downstream of ER stress induced by the absence of amino acids, which needs to be combined with moderate salt stress to induce Sec body formation. SIK, and IRE1 and PERK activation appear to potentiate each other through the stimulation of the unfolded protein response, a key parameter in Sec body formation. This work shows the role of SIKs in phase transition and re-enforces the role of IRE1 and PERK as a metabolic sensor for the level of circulating amino acids and salt. This article has an associated First Person interview with the first author of the paper

    Working environment and fatigue among fishers in the north Atlantic: a field study

    Get PDF
    Background: This study investigates how Faroese deep-sea fishers’ exposure to work-related stressors affects their sleep, sleepiness, and levels of fatigue. Being constantly exposed to the unpredictable and harsh North Atlantic Ocean, having long work hours and split sleep for up to 40 days consecutively, they will arguably suffer from fatigue. Materials and methods: One hundred and fifty seven fishers participated in this study, and data was gathered throughout 202 days at sea. Subjective data was collected at the start and end of trips via questionnaires, sleep and sleepiness diaries and supplemented by objective sleep data through actigraphs. Ship movements were logged with a gyroscope connected to a laptop. A noise metre measured each work station and resting area, and noise exposure profiles were calculated based on each participant’s activity and location. Linear mixed-effect models investigated the effects of work exposure variables on sleep efficiency, and cumulative link mixed models measured effects on the Karolinska Sleepiness Scale and physical fatigue scale. Results: Time of day followed by ship movement were the exposure variables with the highest impact on the outcome variables of sleep efficiency, sleepiness and physical fatigue. The number of days at sea revealed correlations to outcome variables either by itself or interacting with the sleep periods per day. Crew size, shift system or noise did not impact outcome variables when in the model with other variables. Larger catches improved sleep efficiency but did not affect sleepiness and physical fatigue ratings. Conclusions: The findings indicate a chronically fatigued fisher population, and recommends urgent attention being paid to improving the structure of vessels and installing stabilators for greater stability at sea; work schedules being evaluated for protection of health; and work environments being designed that fulfill human physiological requirements in order to ensure the wellbeing and safety of those at sea

    Stress-induced phase separation of ERES components into Sec bodies precedes ER exit inhibition in mammalian cells

    Get PDF
    Phase separation of components of ER exit sites (ERES) into membraneless compartments, the Sec bodies, occurs in Drosophila cells upon exposure to specific cellular stressors, namely, salt stress and amino acid starvation, and their formation is linked to the early secretory pathway inhibition. Here, we show Sec bodies also form in secretory mammalian cells upon the same stress. These reversible and membraneless structures are positive for ERES components, including both Sec16A and Sec16B isoforms and COPII subunits. We find that Sec16A, but not Sec16B, is a driver for Sec body formation, and that the coalescence of ERES components into Sec bodies occurs by fusion. Finally, we show that the stress-induced coalescence of ERES components into Sec bodies precedes ER exit inhibition, leading to their progressive depletion from ERES that become non-functional. Stress relief causes an immediate dissolution of Sec bodies and the concomitant restoration of ER exit. We propose that the dynamic conversion between ERES and Sec body assembly, driven by Sec16A, regulates protein exit from the ER during stress and upon stress relief in mammalian cells, thus providing a conserved pro-survival mechanism in response to stress

    Sleep in everyday life – relationship to mood and performance in young and older adults: a study protocol

    Get PDF
    Laboratory based sleep deprivation studies demonstrate that lack of sleep impairs well-being and performance ability, but suggest that these effects are mitigated in older adults. Yet, much less is known whether day-to-day variations of sleep have similar consequences in the context of everyday life. This project uses an intensive longitudinal design to investigate the occurrence of day-to-day variations in sleep and their impact on mood and performance in everyday life and to examine whether effects differ between young and older adults. We aim to include 160 young (18–30 years) and 160 older adults (55–75 years) to complete a 21-day experience sampling method (ESM) protocol. During the ESM period, participants are asked to fill in (i) a brief morning questionnaire, (ii) 8 short daytime questionnaires addressing momentary well-being, sleepiness, stress, and mind wandering, followed by a 1 min cognitive task and (iii) a brief evening questionnaire, all delivered via a mobile phone application. Sleep will be measured using self-reports (daily questions) and objectively with wrist actigraphy. The impact of adult age on mean levels and intraindividual variability of sleep will be analyzed using mixed-effects location scale models. The impact of sleep on daily cognitive performance will be analyzed using multilevel linear mixed models. The relationship of sleep to mean values and variability of positive and negative affect in young and older adults will be analyzed using mixed-effects location scale modeling. The overarching purpose of the project is improving the current knowledge on the occurrence of day-to-day variations in sleep and their relationship to performance as well as positive and negative affect in young and older adults

    BAKTRAK: Backtracking drifting objects using an iterative algorithm with a forward trajectory model

    Full text link
    The task of determining the origin of a drifting object after it has been located is highly complex due to the uncertainties in drift properties and environmental forcing (wind, waves and surface currents). Usually the origin is inferred by running a trajectory model (stochastic or deterministic) in reverse. However, this approach has some severe drawbacks, most notably the fact that many drifting objects go through nonlinear state changes underway (e.g., evaporating oil or a capsizing lifeboat). This makes it difficult to naively construct a reverse-time trajectory model which realistically predicts the earliest possible time the object may have started drifting. We propose instead a different approach where the original (forward) trajectory model is kept unaltered while an iterative seeding and selection process allows us to retain only those particles that end up within a certain time-space radius of the observation. An iterative refinement process named BAKTRAK is employed where those trajectories that do not make it to the goal are rejected and new trajectories are spawned from successful trajectories. This allows the model to be run in the forward direction to determine the point of origin of a drifting object. The method is demonstrated using the Leeway stochastic trajectory model for drifting objects due to its relative simplicity and the practical importance of being able to identify the origin of drifting objects. However, the methodology is general and even more applicable to oil drift trajectories, drifting ships and hazardous material that exhibit non-linear state changes such as evaporation, chemical weathering, capsizing or swamping. The backtracking method is tested against the drift trajectory of a life raft and is shown to predict closely the initial release position of the raft and its subsequent trajectory.Comment: 28 pages, 8 figures, 2 table
    corecore