31 research outputs found

    Continent formation through time

    Get PDF
    The continental crust is the primary archive of geological history, and is host to most of our natural resources. Thus, the following remain critical questions in Earth Science, and provide an underlying theme to all of the contributions within this volume: when, how and where did the continental crust form? How did it differentiate and evolve through time? How has it has been preserved in the geological record? This introductory review provides a background to these themes, and provides an outline of the contributions contained within this volum

    A squall by the seashore ca 2.3 billion years ago : raindrop imprints in a Paleoproterozoic tidal flat deposit, Kungarra Formation, Western Australia

    Get PDF
    In this contribution, we describe the occurrence of well-preserved Paleoproterozoic raindrop impact imprints on two surfaces of rippled siltstone–mudstone from the uppermost part of the Paleoproterozoic Kungarra Formation, Turee Creek Group, Western Australia. The raindrop imprints appear on the tops of two immediately overlying bedding surfaces in siltstone, near the top of a shallowing upward sequence that progresses from sandstone to mudstone. Imprints are circular to elliptical with an average diameter of 2–3 mm and a maximum length of 6.3 mm when elliptical. Flat ripple crest morphologies, varied ripple crest orientations, and marks of standing water in the ripple troughs indicate very shallow water conditions. When combined with sedimentological data from the underlying Kungarra Formation (shallow marine sandstones and siltstones), and mature quartz arenites of the overlying Koolbye Formation (mixed tidal, beach, fluvial and eolian), the interval examined is interpreted as a tidal flat deposited during a falling stage systems tract.University of New South Wales, Agouron Institute and University of New South Wales.http://www.tandfonline.com/loi/taje202016-09-30hb201

    A marine to fluvial transition in the Paleoproterozoic Koolbye Formation, Turee Creek Group, Western Australia

    Get PDF
    Although no unambiguous biogenic criteria exist to discriminate Precambrian shallow-marine succes-sions from fluvial deposits, physical sedimentological evidence, including an association of primarysedimentary structures and textures, stratigraphic position, and comparison with Phanerozoic and Mod-ern examples has been found useful in identifying these deposit types. Our high resolution sedimentaryfacies analysis coupled with new mapping clearly indicates shallow-marine to beach-aeolian to fluvialsedimentation in the Paleoproterozoic Koolbye Formation of the Turee Creek Group, Western Australia.A falling stage systems tract within the Koolbye Formation has been documented. Our sedimentary faciesanalysis in combination with sedimentological analysis of the underlying Kungarra Formation indicatesdevelopment of at least three falling stage systems tracts within the Turee Creek Group across the rise ofatmospheric oxygen (the Great oxidation event).University of New South Wales (UNSW) and the Agouron Institute.http://www.elsevier.com/locate/precamres2016-03-31hb201

    The moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study

    Get PDF
    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter–containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable

    Next-generation sequencing-based genome diagnostics across clinical genetics centers: Implementation choices and their effects

    Get PDF
    Implementation of next-generation DNA sequencing (NGS) technology into routine diagnostic genome care requires strategic choices. Instead of theoretical discussions on the consequences of such choices, we compared NGS-based diagnostic practices in eight clinical genetic centers in the Netherlands, based on genetic testing of nine pre-selected patients with cardiomyopathy. We highlight critical implementation choices, including the specific contributions of laboratory and medical specialists, bioinformaticians and researchers to diagnostic genome care, and how these affect interpretation and reporting of variants. Reported pathogenic mutations were consistent for all but one patient. Of the two centers that were inconsistent in their diagnosis, one reported to have found 'no causal variant', thereby underdiagnosing this patient. The other provided an alternative diagnosis, identifying another variant as causal than the other centers. Ethical and legal analysis showed that informed consent procedures in all centers were generally adequate for diagnostic NGS applications that target a limited set of genes, but not for exome- and genome-based diagnosis. We propose changes to further improve and align these procedures, taking into account the blurring boundary between diagnostics and research, and specific counseling options for exome- and genome-based diagnostics. We conclude that alternative diagnoses may infer a certain level of 'greediness' to come to a positive diagnosis in interpreting sequencing results. Moreover, there is an increasing interdependence of clinic, diagnostics and research departments for comprehensive diagnostic genome care. Therefore, we invite clinical geneticists, physicians, researchers, bioinformatics experts and patients to reconsider their role and position in future diagnostic genome care

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Origin of fine-scale sheeted granites by incremental injection of magma into active shear zones: examples from the Pilbara Craton, NW Australia

    No full text
    In the Archaean Pilbara Craton of Western Australia, three zones of heterogeneous centimetre- to metre-scale sheeted granites are interpreted to represent high-level, syn-magmatic shear zones. Evidence for the syn-magmatic nature of the shear zones include imbricated and asymmetrically rotated metre-scale orthogneiss xenoliths that are enveloped by leucogranite sheets that show no significant internal strain. At another locality, granite sheets have a strong shape-preferred alignment of K-feldspar, suggesting magmatic flow, while the asymmetric recrystallisation of the grain boundaries indicates that non-coaxial deformation continued acting upon the sheets under sub-solidus conditions. Elsewhere, randomly oriented centimetre-wide leucogranite dykes are realigned at a shear zone boundary to form semi-continuous, layer-parallel sheets within a magma-dominated, dextral shear zone.\ud \ud It is proposed that the granite sheets formed by the incremental injection of magmas into active shear zones. Magma was sheared during laminar flow to produce the sheets that are aligned sub-parallel to the shear zone boundary. Individual sheets are fed by individual dykes, with up to 1000s of discrete injections in an individual shear zone. The sheets often lack microstructural evidence for magmatic flow, either because the crystal content of the magma was too low to record internal strain, or because of later recrystallisation
    corecore