2,686 research outputs found
Long delay times in reaction rates increase intrinsic fluctuations
In spatially distributed cellular systems, it is often convenient to
represent complicated auxiliary pathways and spatial transport by time-delayed
reaction rates. Furthermore, many of the reactants appear in low numbers
necessitating a probabilistic description. The coupling of delayed rates with
stochastic dynamics leads to a probability conservation equation characterizing
a non-Markovian process. A systematic approximation is derived that
incorporates the effect of delayed rates on the characterization of molecular
noise, valid in the limit of long delay time. By way of a simple example, we
show that delayed reaction dynamics can only increase intrinsic fluctuations
about the steady-state. The method is general enough to accommodate nonlinear
transition rates, allowing characterization of fluctuations around a
delay-induced limit cycle.Comment: 8 pages, 3 figures, to be published in Physical Review
A new modelling framework for statistical cumulus dynamics
We propose a new modelling framework suitable for the description of atmospheric convective systems as a collection of distinct plumes. The literature contains many examples of models for collections of plumes in which strong simplifying assumptions are made, a diagnostic dependence of convection on the large-scale environment and the limit of many plumes often being imposed from the outset. Some recent studies have sought to remove one or the other of those assumptions. The proposed framework removes both, and is explicitly time-dependent and stochastic in its basic character. The statistical dynamics of the plume collection are defined through simple probabilistic rules applied at the level of individual plumes, and van Kampen's system size expansion is then used to construct the macroscopic limit of the microscopic model. Through suitable choices of the microscopic rules, the model is shown to encompass previous studies in the appropriate limits, and to allow their natural extensions beyond those limits
A generalization of the cumulant expansion. Application to a scale-invariant probabilistic model
As well known, cumulant expansion is an alternative way to moment expansion
to fully characterize probability distributions provided all the moments exist.
If this is not the case, the so called escort mean values (or q-moments) have
been proposed to characterize probability densities with divergent moments [C.
Tsallis et al, J. Math. Phys 50, 043303 (2009)]. We introduce here a new
mathematical object, namely the q-cumulants, which, in analogy to the
cumulants, provide an alternative characterization to that of the q-moments for
the probability densities. We illustrate this new scheme on a recently proposed
family of scale-invariant discrete probabilistic models [A. Rodriguez et al, J.
Stat. Mech. (2008) P09006; R. Hanel et al, Eur. Phys. J. B 72, 263268 (2009)]
having q-Gaussians as limiting probability distributions
Momentum conservation and correlation analyses in heavy-ion collisions at ultrarelativistic energies
Global transverse-momentum conservation induces correlations between any
number of particles, which contribute in particular to the two- and
three-particle correlations measured in heavy-ion collisions. These
correlations are examined in detail, and their importance for studies of jets
and their interaction with the medium is discussed.Comment: 5 pages, 2 figures. v2: corrected typos and added a paragrap
On-off intermittency over an extended range of control parameter
We propose a simple phenomenological model exhibiting on-off intermittency
over an extended range of control parameter. We find that the distribution of
the 'off' periods has as a power-law tail with an exponent varying continuously
between -1 and -2, at odds with standard on-off intermittency which occurs at a
specific value of the control parameter, and leads to the exponent -3/2. This
non-trivial behavior results from the competition between a strong slowing down
of the dynamics at small values of the observable, and a systematic drift
toward large values.Comment: 4 pages, 3 figure
Analytical results for a Fokker-Planck equation in the small noise limit
We present analytical results for the lowest cumulants of a stochastic
process described by a Fokker-Planck equation with nonlinear drift. We show
that, in the limit of small fluctuations, the mean, the variance and the
covariance of the process can be expressed in compact form with the help of the
Lambert W function. As an application, we discuss the interplay of noise and
nonlinearity far from equilibrium.Comment: 5 pages, 4 figure
Statistics of 3-dimensional Lagrangian turbulence
We consider a superstatistical dynamical model for the 3-d movement of a
Lagrangian tracer particle embedded in a high-Reynolds number turbulent flow.
The analytical model predictions are in excellent agreement with recent
experimental data for flow between counter-rotating disks. In particular, we
calculate the Lagrangian scaling exponents zeta_j for our system, and show that
they agree well with the measured exponents reported in [X. Hu et al., PRL 96,
114503 (2006)]. Moreover, the model correctly predicts the shape of velocity
difference and acceleration probability densities, the fast decay of component
correlation functions and the slow decay of the modulus, as well as the
statistical dependence between acceleration components. Finally, the model
explains the numerically [P.K. Yeung and S.B. Pope, J. Fluid Mech. 207, 531
(1989)] and experimentally observed fact [B.W. Zeff et al., Nature 421, 146
(2003)] that enstrophy lags behind dissipation.Comment: 5 pages, 3 figures. Replaced by final version accepted by Phys. Rev.
Let
Transient rectification of Brownian diffusion with asymmetric initial distribution
In an ensemble of non-interacting Brownian particles, a finite systematic
average velocity may temporarily develop, even if it is zero initially. The
effect originates from a small nonlinear correction to the dissipative force,
causing the equation for the first moment of velocity to couple to moments of
higher order. The effect may be relevant when a complex system dissociates in a
viscous medium with conservation of momentum
Relaxation of finite perturbations: Beyond the Fluctuation-Response relation
We study the response of dynamical systems to finite amplitude perturbation.
A generalized Fluctuation-Response relation is derived, which links the average
relaxation toward equilibrium to the invariant measure of the system and points
out the relevance of the amplitude of the initial perturbation. Numerical
computations on systems with many characteristic times show the relevance of
the above relation in realistic cases.Comment: 7 pages, 5 figure
How accurate are the non-linear chemical Fokker-Planck and chemical Langevin equations?
The chemical Fokker-Planck equation and the corresponding chemical Langevin
equation are commonly used approximations of the chemical master equation.
These equations are derived from an uncontrolled, second-order truncation of
the Kramers-Moyal expansion of the chemical master equation and hence their
accuracy remains to be clarified. We use the system-size expansion to show that
chemical Fokker-Planck estimates of the mean concentrations and of the variance
of the concentration fluctuations about the mean are accurate to order
for reaction systems which do not obey detailed balance and at
least accurate to order for systems obeying detailed balance,
where is the characteristic size of the system. Hence the chemical
Fokker-Planck equation turns out to be more accurate than the linear-noise
approximation of the chemical master equation (the linear Fokker-Planck
equation) which leads to mean concentration estimates accurate to order
and variance estimates accurate to order . This
higher accuracy is particularly conspicuous for chemical systems realized in
small volumes such as biochemical reactions inside cells. A formula is also
obtained for the approximate size of the relative errors in the concentration
and variance predictions of the chemical Fokker-Planck equation, where the
relative error is defined as the difference between the predictions of the
chemical Fokker-Planck equation and the master equation divided by the
prediction of the master equation. For dimerization and enzyme-catalyzed
reactions, the errors are typically less than few percent even when the
steady-state is characterized by merely few tens of molecules.Comment: 39 pages, 3 figures, accepted for publication in J. Chem. Phy
- …
