7 research outputs found

    Near-Infrared Spectroscopy-Derived Dynamic Cerebral Autoregulation in Experimental Human Endotoxemia-An Exploratory Study

    Get PDF
    Cerebral perfusion may be altered in sepsis patients. However, there are conflicting findings on cerebral autoregulation (CA) in healthy participants undergoing the experimental endotoxemia protocol, a proxy for systemic inflammation in sepsis. In the current study, a newly developed near-infrared spectroscopy (NIRS)-based CA index is investigated in an endotoxemia study population, together with an index of focal cerebral oxygenation. Methods: Continuous-wave NIRS data were obtained from 11 healthy participants receiving a continuous infusion of bacterial endotoxin for 3 h (ClinicalTrials.gov NCT02922673) under extensive physiological monitoring. Oxygenated–deoxygenated hemoglobin phase differences in the (very)low frequency (VLF/LF) bands and the Tissue Saturation Index (TSI) were calculated at baseline, during systemic inflammation, and at the end of the experiment 7 h after the initiation of endotoxin administration. Results: The median (inter-quartile range) LF phase difference was 16.2° (3.0–52.6°) at baseline and decreased to 3.9° (2.0–8.8°) at systemic inflammation (p = 0.03). The LF phase difference increased from systemic inflammation to 27.6° (12.7–67.5°) at the end of the experiment (p = 0.005). No significant changes in VLF phase difference were observed. The TSI (mean ± SD) increased from 63.7 ± 3.4% at baseline to 66.5 ± 2.8% during systemic inflammation (p = 0.03) and remained higher at the end of the experiment (67.1 ± 4.2%, p = 0.04). Further analysis did not reveal a major influence of changes in several covariates such as blood pressure, heart rate, PaCO(2), and temperature, although some degree of interaction could not be excluded. Discussion: A reversible decrease in NIRS-derived cerebral autoregulation phase difference was seen after endotoxin infusion, with a small, sustained increase in TSI. These findings suggest that endotoxin administration in healthy participants reversibly impairs CA, accompanied by sustained microvascular vasodilation

    Contralesional Brain Activity in Acute Ischemic Stroke

    Get PDF
    Background: The noninjured, contralateral hemisphere is increasingly acknowledged in the process of recovery from acute ischemic stroke. We estimated the value of conventional electroencephalography (EEG) recordings for identifying contralateral hemisphere involvement in relation to functional recovery. Methods: We analyzed 2-min epochs from 21 electrode EEG registrations of 18 patients with acute hemispheric ischemic stroke and compared with 18 age-matched controls. Outcome was dichotomized as good (modified Rankin Scale [mRS] 0-2) or poor (mRS 3-5 or death) at 3 months. Effects of the infarct on the ipsi-and contralateral hemispheres were analyzed by the delta/alpha ratio (DAR) and 2 measures of functional connectivity (magnitude squared coherence [MSC] and weighted phase lag index [WPLI]). Results: DAR was higher in patients than in controls, both in the ipsilateral and in the contralateral hemisphere (median 4.5 ± 6.7 ipsilateral and 2.4 ± 2.0 contralateral vs. 0.5 ± 0.5 in the control group, p < 0.001), indicating robust EEG changes in both lesioned and non-lesioned hemisphere. MSC and WPLI in the alpha and beta frequency bands were lower in patients than in controls in both hemispheres, indicating clear disturbances of functional connectivity (p < 0.05). In the poor outcome group, contralateral MSC and WPLI were lower than in the good outcome group, although these differences did not reach statistical significance. Conclusions: Short conventional EEG measurements show robust changes of brain activity and functional connectivity in both ipsilateral and contralateral hemispheres of patients with acute ischemic stroke. Changes of remote functional connectivity tend to interact with functional recovery. Future studies should estimate predictive values for individual patients and interactions with plasticity enhancing treatments

    Influence of neonatal endotracheal tube dimensions on oscillometry-acquired reactance: a bench study

    No full text
    Objective. To examine the influence of the endotracheal tube (ETT) on respiratory reactance (Xrs) measured with the forced oscillation technique (FOT) and develop a correction method for it. Approach. In a bench study, the reactance of ETTs (Xtube) with different dimensions was measured on a breathing test lung in various respiratory settings. Main results. Xtube can be accurately predicted by a fitted formula, with an R2 of 0.97, with negligible effects due to changes in respiratory pattern and lung volume. Significance. The developed formula offers the ability to measure ETT-independent Xrs values of patients, improving the potential of FOT for lung function testing in mechanically ventilated newborns

    Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial

    No full text
    Managing traumatic brain injury (TBI) patients with a cerebral perfusion pressure (CPP) near to the cerebral autoregulation (CA)-guided "optimal" CPP (CPPopt) value is associated with improved outcome and might be useful to individualize care, but has never been prospectively evaluated. This study evaluated the feasibility and safety of CA-guided CPP management in TBI patients requiring intracranial pressure monitoring and therapy (TBIicp patients). The CPPopt Guided Therapy: Assessment of Target Effectiveness (COGiTATE) parallel two-arm feasibility trial took place in four tertiary centers. TBIicp patients were randomized to either the Brain Trauma Foundation (BTF) guideline CPP target range (control group) or to the individualized CA-guided CPP targets (intervention group). CPP targets were guided by six times daily software-based alerts for up to 5 days. The primary feasibility end-point was the percentage of time with CPP concordant (+/- 5 mm Hg) with the set CPP targets. The main secondary safety end-point was an increase in therapeutic intensity level (TIL) between the control and intervention group. Twenty-eight patients were randomized to the control and 32 patients to the intervention group. CPP in the intervention group was in the target range for 46.5% (interquartile range, 41.2-58) of the monitored time, significantly higher than the feasibility target specified in the published protocol (36%; p < 0.001). There were no significant differences between groups for TIL or for other safety end-points. Conclusively, targeting an individual and dynamic CA-guided CPP is feasible and safe in TBIicp patients. This encourages a prospective trial powered for clinical outcomes

    Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial.

    No full text
    Managing traumatic brain injury (TBI) patients with a cerebral perfusion pressure (CPP) near to the cerebral autoregulation (CA)-guided "optimal" CPP (CPPopt) value is associated with improved outcome and might be useful to individualize care, but has never been prospectively evaluated. This study evaluated the feasibility and safety of CA-guided CPP management in TBI patients requiring intracranial pressure monitoring and therapy (TBIicp patients). The CPPopt Guided Therapy: Assessment of Target Effectiveness (COGiTATE) parallel two-arm feasibility trial took place in four tertiary centers. TBIicp patients were randomized to either the Brain Trauma Foundation (BTF) guideline CPP target range (control group) or to the individualized CA-guided CPP targets (intervention group). CPP targets were guided by six times daily software-based alerts for up to 5 days. The primary feasibility end-point was the percentage of time with CPP concordant (±5 mm Hg) with the set CPP targets. The main secondary safety end-point was an increase in therapeutic intensity level (TIL) between the control and intervention group. Twenty-eight patients were randomized to the control and 32 patients to the intervention group. CPP in the intervention group was in the target range for 46.5% (interquartile range, 41.2-58) of the monitored time, significantly higher than the feasibility target specified in the published protocol (36%; p < 0.001). There were no significant differences between groups for TIL or for other safety end-points. Conclusively, targeting an individual and dynamic CA-guided CPP is feasible and safe in TBIicp patients. This encourages a prospective trial powered for clinical outcomes

    Prolonged Continuous Monitoring of Regional Lung Function in Infants with Respiratory Failure

    Get PDF
    Rationale: Electrical impedance tomography (EIT) allows instantaneous and continuous visualization of regional ventilation and changes in end-expiratory lung volume at the bedside. There is particular interest in using EIT for monitoring in critically ill neonates and young children with respiratory failure. Previous studies have focused only on short-term monitoring in small populations. The feasibility and safety of prolonged monitoring with EIT in neonates and young children have not been demonstrated yet. Objectives: To evaluate the feasibility and safety of long-term EIT monitoring in a routine clinical setting and to describe changes in ventilation distribution and homogeneity over time and with positioning in a multicenter cohort of neonates and young children with respiratory failure. Methods: At four European University hospitals, we conducted an observational study (NCT02962505) on 200 patients with postmenstrual ages (PMA) between 25 weeks and 36 months, at risk for or suffering from respiratory failure. Continuous EIT data were obtained using a novel textile 32-electrode interface and recorded at 48 images/s for up to 72 hours. Clinicians were blinded to EIT images during the recording. EIT parameters and the effects of body position on ventilation distribution were analyzed offline. Results: The average duration of EIT measurements was 53 6 20 hours. Skin contact impedance was sufficient to allow image reconstruction for valid ventilation analysis during a median of 92% (interquartile range, 77–98%) of examination time. EIT examinations were well tolerated, with minor skin irritations (temporary redness or imprint) occurring in 10% of patients and no moderate or severe adverse events. Higher ventilation amplitude was found in the dorsal and right lung areas when compared with the ventral and left regions, respectively. Prone positioning resulted in an increase in the ventilation-related EIT signal in the dorsal hemithorax, indicating increased ventilation of the dorsal lung areas. Lateral positioning led to a redistribution of ventilation toward the dependent lung in preterm infants and to the nondependent lung in patients with PMA . 37 weeks. Conclusions: EIT allows continuous long-term monitoring of regional lung function in neonates and young children for up to 72 hours with minimal adverse effects. Our study confirmed the presence of posture-dependent changes in ventilation distribution and their dependency on PMA in a large patient cohort
    corecore