136 research outputs found

    The electron transport chain in anaerobically functioning eukaryotes

    Get PDF
    AbstractMany lower eukaryotes can survive anaerobic conditions via a fermentation pathway that involves the use of the reduction of endogenously produced fumarate as electron sink. This fumarate reduction is linked to electron transport in an especially adapted, anaerobically functioning electron-transport chain.An aerobic energy metabolism with Krebs cycle activity is accompanied by electron transfer from succinate to ubiquinone via complex II of the respiratory chain. On the other hand, in an anaerobic metabolism, where fumarate functions as terminal electron acceptor, electrons are transferred from rhodoquinone to fumarate, which is the reversed direction. Ubiquinone cannot replace rhodoquinone in the process of fumarate reduction in vivo, as ubiquinone can only accept electrons from complex II and cannot donate them to fumarate. Rhodoquinone, with its lower redox potential than ubiquinone, is capable of donating electrons to fumarate. Eukaryotic fumarate reductases were shown to interact with rhodoquinone (a benzoquinone), whereas most prokaryotic fumarate reductases interact with the naphtoquinones menaquinone and demethylmenaquinone.Fumarate reductase, the enzyme essential for the anaerobic functioning of many eukaryotes, is structurally very similar to succinate dehydrogenase, the Krebs cycle enzyme catalysing the reverse reaction. In prokaryotes these enzymes are differentially expressed depending on the external conditions. Evidence is now emerging that also in eukaryotes two different enzymes exist for succinate oxidation and fumarate reduction that are differentially expressed

    Severity of imported malaria: protective effect of taking malaria chemoprophylaxis

    Get PDF
    BACKGROUND: Although chemoprophylaxis remains an important strategy for preventing malaria in travellers, its effectiveness may be compromised by lack of adherence. Inappropriate use of chemoprophylaxis is likely to increase the risk of acquiring malaria, but may probably also worsen the severity of imported cases. The aim of this study was to assess the impact of use of malaria chemoprophylaxis on clinical features and outcome of imported malaria. METHODS: Demographic, clinical and laboratory data of patients included in the Rotterdam Malaria Cohort between 1998 and 2011 were systematically collected and analysed. Patients were classified as self-reported compliant or non-compliant users or as non-users of chemoprophylaxis. Severe malaria was defined using the 2010 WHO criteria. RESULTS: Details on chemoprophylaxis were available for 559 of the 604 patients, of which 64.6% were non-users, 17.9% were inadequate users and 17.5% reported to be adequate users. The group of non-users was predominated by patients with African ethnicity, partial immunity and people visiting friends and relatives. The majority contracted Plasmodium falciparum malaria. In contrast, compliant users acquired non-falciparum malaria more frequently, had significant lower P. falciparum loads on admission, shorter duration of hospitalization and significant lower odds for severe malaria as compared with non-users. Patients with P. falciparum malaria were more likely to have taken their chemoprophylaxis less compliantly than those infected with non-P. falciparum species. Multivariate analysis showed that self-reported adequate prophylaxis and being a partially immune traveller visiting friends and relatives was associated with significantly lower odds ratio of severe malaria. In contrast, age, acquisition of malaria in West-Africa and being a non-immune tourist increased their risk significantly. CONCLUSIONS: Compliant use of malaria chemoprophylaxis was associated with significantly lower odds ratios for severe malaria as compared with non-compliant users and non-users of chemoprophylaxis. After correction for age, gender and immunity, this protective effect of malaria chemoprophylaxis was present only in individuals who adhered compliantly to use of chemoprophylaxis. Patients with P. falciparum malaria were more likely to have used their chemoprophylaxis less compliantly than patients with non-P. falciparum malaria who were more likely to have contracted malaria in spite of compliant use of chemoprophylaxis

    Copeptin does not accurately predict disease severity in imported malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copeptin has recently been identified to be a stable surrogate marker for the unstable hormone arginine vasopressin (AVP). Copeptin has been shown to correlate with disease severity in leptospirosis and bacterial sepsis. Hyponatraemia is common in severe imported malaria and dysregulation of AVP release has been hypothesized as an underlying pathophysiological mechanism. The aim of the present study was to evaluate the performance of copeptin as a predictor of disease severity in imported malaria.</p> <p>Methods</p> <p>Copeptin was measured in stored serum samples of 204 patients with imported malaria that were admitted to our Institute for Tropical Diseases in Rotterdam in the period 1999-2010. The occurrence of WHO defined severe malaria was the primary end-point. The diagnostic performance of copeptin was compared to that of previously evaluated biomarkers C-reactive protein, procalcitonin, lactate and sodium.</p> <p>Results</p> <p>Of the 204 patients (141 <it>Plasmodium falciparum</it>, 63 non-falciparum infection), 25 had severe malaria. The Area Under the ROC curve of copeptin for severe disease (0.66 [95% confidence interval 0.59-0.72]) was comparable to that of lactate, sodium and procalcitonin. C-reactive protein (0.84 [95% CI 0.79-0.89]) had a significantly better performance as a biomarker for severe malaria than the other biomarkers.</p> <p>Conclusions</p> <p>C-reactive protein but not copeptin was found to be an accurate predictor for disease severity in imported malaria. The applicability of copeptin as a marker for severe malaria in clinical practice is limited to exclusion of severe malaria.</p

    Epidemiology of Pneumocystis jirovecii pneumonia and (non-)use of prophylaxis

    Get PDF
    Objectives: Pneumocystis jirovecii pneumonia (PCP) is an AIDS-defining illness. In patients with HIV, the benefit of PCP prophylaxis is well-defined when the CD4 T-cell count decreases below 200 cells/μL. In other immunocompromised patients, the value of PCP prophylaxis is not always as well-established. This study aimed to describe the epidemiology of PCP in recent years and assess how many patients with PCP did or did not receive prophylaxis in the month preceding the infection. Material and Methods: A multicenter retrospective study was performed in 3 tertiary care hospital. A list of patients that underwent broncho-alveolar lavage sampling and Pneumocystis jirovecii (PJ) PCR testing was retrieved from the microbiology laboratories. An in-house PJ quantitative PCR (qPCR) was used in each center. A cycle threshold (Ct) value of ≤ 28.5–30 was considered a probable PCP. For patients with a positive PJ qPCR but above this threshold, a predefined case definition of possible PCP was defined as a qPCR Ct value ≤ 34–35 and both of the following criteria: 1. Clinical and radiological features compatible with PCP and 2. The patient died or received PCP therapy and survived. Patient files from those with a qPCR Ct value ≤ 35 were reviewed to determine whether the patient fulfilled the case definition and if PCP prophylaxis had been used in the weeks preceding the PCP. Disease-specific guidelines, as well as hospital-wide guidelines, were used to evaluate if prophylaxis could be considered indicated. Results: From 2012 to 2018, 482 BAL samples were tested. Two hundred and four had a qPCR Ct value ≤ 35 and were further evaluated: 90 fulfilled the definition of probable and 63 of possible PCP while the remaining 51 were considered colonized. Seventy-four percentages of the patients with PCP were HIV-negative. Only 11 (7%) of the 153 patients had received prophylaxis, despite that in 133 (87%) cases prophylaxis was indicated according to guidelines. Conclusion: In regions where HIV testing and treatment is available without restrictions, PCP is mainly diagnosed in non-HIV immunocompromised patients. More than four out of five patients with PCP had not received prophylaxis. Strategies to improve awareness of antimicrobial prophylaxis guidelines in immunocompromised patients are urgently needed

    Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization

    Get PDF
    Background: Recognition of pathogens by dendritic cells (DCs) through interaction with pattern recognition receptors, including Toll like receptors (TLR), is crucial for the initiation of appropriate polarized T helper (Th) cell responses. Yet, the characteristics and differences in molecular profiles of DCs with different T cell polarizing capacities are still poorly defined. To address this issue, the molecular profile of human monocyte derived DCs was characterized after exposure to TLR4 ligand LPS in combination with the Th1 promoting bacterial extracts from Listeria monocytogenes and Escherichia coli or the Th2 promoting helminth derived phospholipids from Schistosoma mansoni and Ascaris lumbricoides, all with TLR2 activating capacity. Results: With regard to the signalling pathways activated upon exposure to LPS and the TLR2 activating compounds, we find that the ratio of activated Mitogen Activated Protein Kinases (MAPK) p-ERK/p-p38 is lower in DCs stimulated with the bacterial products compared to DCs stimulated with the helminth products, which correlates with the Th1 and Th2 polarizing capacity of these compounds. Furthermore, analysis of the mRNA expression levels of a set of 25 carefully selected genes potentially involved in modulation of T cell polarization revealed that the mRNA expression of notch ligand delta-4 and transcription factor c-fos are differentially regulated and show a strong correlation with Th1 and Th2 polarization, respectively. Conclusion: This study shows that combined TLR2 and TLR4 activation in the context of different antigen sources can induce very distinct molecular profiles in DCs and suggests that the Th1/Th2 polarizing capacity of compounds can be predicted with the molecular signature they induce in DCs

    A simple and fast method to exclude high Plasmodium falciparum parasitaemia in travellers with imported malaria

    Get PDF
    Background: Counts of malaria parasites in peripheral blood are important to assess severity of Plasmodium falciparum malaria. Thin and thick smears are routinely used for this purpose. Methods. In this study the Binax NOW® Malaria Test, an easy-to-perform rapid diagnostic test, with Histidine Rich Protein-2 (HRP-2) and aldolase as diagnostic markers, was used for semi-quantitative assessment of parasitaemia of P. faciparum. Results: In 257 patients with imported P. falciparum malaria, reactivity of aldolase increased with higher parasitaemia. In all patients with a parasitaemia above 50,000 asexual parasites/l (> 1%) co-reactivity of HRP-2 and aldolase was observed. Absence of aldolase reactivity in the presence of HRP-2 was a reliable predictive marker to exclude high (> 1%) parasitaemia in P. falciparum malaria. Conclusions: Assessment of HRP-2 and aldolase co-reactivity can be of help in clinical decision making in the acute care setting of returning travellers suspected of having malaria
    corecore