14 research outputs found

    Absolute instabilities of travelling wave solutions in a Keller-Segel model

    Full text link
    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis

    Pinned fronts in heterogeneous media of jump type

    No full text
    In this paper, we analyse the impact of a (small) heterogeneity of jump type on the most simple localized solutions of a 3-component FitzHugh–Nagumo-type system. We show that the heterogeneity can pin a 1-front solution, which travels with constant (non-zero) speed in the homogeneous setting, to a fixed, explicitly determined, distance from the heterogeneity. Moreover, we establish the stability of this heterogeneous pinned 1-front solution. In addition, we analyse the pinning of 1-pulse, or 2-front, solutions. The paper is concluded with simulations in which we consider the dynamics and interactions of N-front patterns in domains with M heterogeneities of jump type (N = 3, 4, M ≥ 1)

    (In)Stability of Travelling Waves in a Model of Haptotaxis

    No full text
    Free to read at publisher's site. We examine the spectral stability of travelling waves of the haptotaxis model studied previously by Harley et al. (2014). In the process we apply Liénard coordinates to the linearised stability problem and develop a new method for numerically computing the Evans function and point spectrum of a linearised operator associated with a travelling wave. We show the instability of non-monotone waves (type IV) and numerically establish the stability of the monotone ones (types I-III)
    corecore