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Abstract In this article, we analyze the three-component reaction-diffusion system origi-
nally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable
activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the
standard inhibitor (or recovery variable). It has been used by several authors as a proto-
type three-component system that generates rich pulse dynamics and interactions, and this
richness is the main motivation for the analysis we present. We demonstrate the existence
of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the
real line, and we determine the parameter regimes in which they exist. Also, for one-pulse
solutions, we analyze various bifurcations, including the saddle-node bifurcation in which
they are created, as well as the bifurcation from a stationary to a travelling pulse, which we
show can be either subcritical or supercritical. For two-pulse solutions, we show that the third
component is essential, since the reduced bistable two-component system does not support
them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created.
The analytical method used to construct all of these pulse solutions is geometric singular
perturbation theory, which allows us to show that these solutions lie in the transverse inter-
sections of invariant manifolds in the phase space of the associated six-dimensional travelling
wave system. Finally, as we illustrate with numerical simulations, these solutions form the
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backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse
annihilation, breathing pulses, and pulse scattering, among others.

Keywords Three-component reaction-diffusion systems · One-pulse solutions · Travelling
pulse solutions · Two-pulse solutions · Geometric singular perturbation theory ·
Melnikov function

AMS (MOS) Subject Classifications Primary: 35K55 · 35B32 · 34C37 · Secondary:
35K40

1 Introduction

Spatially localized structures, such as fronts, pulses and spots, have been found to exhibit a
wide variety of interesting dynamics in dissipative systems. These dynamics include repul-
sion, annihilation, attraction, breathing, collision, scattering, self-replication, and spontane-
ous generation. The richness of the observed dynamics typically increases with the complexity
and the size of the system. Localized structures, that do not exist in reaction-diffusion (RD)
systems with a small number of components, may readily exist when more components and
more terms are added to the system. Likewise, solutions that are unstable in small or simple
RD systems may become stable with such additions.

The aim of this article is to report on the mathematical analysis of a paradigm exam-
ple that exhibits this increased richness. In particular, we study the three-component model
introduced in [22] and studied further in [2,15,17,18,24,25]. In one space dimension, the
equations are

⎧
⎨

⎩

Ut = DU Uxx + f (U ) − κ3V − κ4W + κ1

τ Vt = DV Vxx + U − V
θWt = DW Wxx + U − W.

(1.1)

where we used the notation of [15] and we note that (1.1) has the reversibility symmetry
x → −x . Here, the (U, V )-subsystem is a classical, bistable two-component RD system,
which exhibits dynamics similar to the classical FitzHugh–Nagumo equations (although here
DV �= 0, whereas DV = 0 in FHN), and the variable W denotes an added inhibitor compo-
nent. We will show that it is responsible for increasing the richness of the types of solutions
the model possesses.

In (1.1), U, V , and W are real-valued functions of x ∈ R and t ∈ R
+, and the subscripts

indicate partial derivatives. The parameters τ and θ are positive constants, and the primary
interest is in using τ as the bifurcation parameter. The diffusivities of the respective compo-
nents are denoted by DU , DV , and DW , f (U ) is a bistable cubic reaction function (often
taken to be f (U ) = 2U − U 3), κ3 and κ4 denote reaction rates, and κ1 denotes a constant
source term.

The fundamental discovery reported in [22] is that, in this three-component model, the
added component W can stabilize stationary and travelling single spot solutions and multi-
spot solutions in two space dimensions, which otherwise are inherently unstable in the classi-
cal two-component (U, V )-bistable model. This stabilization was shown to occur when DW

is sufficiently large relative to DU and DV , because then the presence of W prevents spots
from extending in the directions perpendicular to their directions of motion. In this manner,
W suppresses the instability that spots undergo in two-component systems [22].
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The dynamics of pulses in the one-dimensional model (1.1) is also known to be richer than
in the corresponding one-dimensional version of the two-component model. Pulses collide,
scatter, annihilate, among others, as has been shown in [15,16], whereas the dynamics of
pulses in the restricted two-component system is much less rich. A special class of unsta-
ble two-pulse solutions, called scattors or separators, is identified for (1.1) in [15,16]. It is
shown that their stable and unstable manifolds organize the evolution in phase space of all
nearby solutions. More precisely, during the course of a collision between two pulses, they
converge to a separator state, and the location of the initial data relative to the stable and
unstable manifolds of this separator determines how and when the pulses scatter off each
other. Furthermore, in some parameter regimes, the scattering process may be directed by
a combination of two separators, where the colliding pulses first approach one separator,
spend a long time near it, and then approach a second separator state, and then finally repel
or annihilate, see [15,16].

Our work is inspired by the results from [18,22] and [15,16]. We carry out a complemen-
tary, rigorous analysis of the existence of certain pulse solutions for a scaled version of the
three-component model, see (1.6) below. The model has a rich geometric structure that will
be studied using geometric singular perturbation theory, and we note that the application of
this theory is challenging due to the fact that the associated ordinary differential equations
are six-dimensional.

1.1 Statement of the Model Equations

In [2,15,17,18,22,24,25], the numerical values of the diffusivities of the three species dif-
fer by several orders of magnitude. For example, in [15], the values are DU = 5 × 10−6,
DV = 5 × 10−5, and DW = 10−2. Therefore, we are motivated to introduce a scaled spatial
variable

x̃ = x√
DV

. (1.2)

For computational convenience we also scale out the factor two in the nonlinearity f (U ) =
2U − U 3. Therefore, we introduce

t̃ = 2t, (Ũ , Ṽ , W̃ ) = 1

2

√
2(U, V, W ), (τ̃ , θ̃ ) = 2(τ, θ),

(κ̃1, κ̃3, κ̃4) = 1

2

(
1

2

√
2κ1, κ3, κ4

)

. (1.3)

In terms of these scaled quantities, the system (1.1) is

⎧
⎨

⎩

Ũt̃ = ε2Ũx̃ x̃ + Ũ − Ũ 3 − κ̃3Ṽ − κ̃4W̃ + κ̃1

τ̃ Ṽt̃ = Ṽx̃ x̃ + Ũ − Ṽ
θ̃W̃t̃ = D2W̃x̃ x̃ + Ũ − W̃ ,

(1.4)

with the nondimensional diffusivities ε2 = DU /(2DV ) � 1 and D2 = DW /DV � 1.
As to the parameters in the reaction terms, the numerical values that are used in [15] are

(κ1, κ3, κ4) = (−7, 1, 8.5), and very similar values are used in [22]. While these are O(1)

with respect to ε, it is helpful to first study the system with O(ε) values of these parameters;
i.e., to introduce scaled parameters, as follows:

κ̃1 = −εγ, κ̃3 = εα, κ̃4 = εβ, (1.5)
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where α, β, and γ are O(1) quantities and where we have taken κ1 to be negative, since it is
negative in all of the above cited articles.

The rationale for this choice of scalings (1.5) is threefold. First, this choice was made
to facilitate the mathematical analysis, since in this regime the terms in the U -equation
corresponding to the source and to the coupling from the inhibitor components are weak, yet
not too weak. In fact, the effects of the source and the coupling terms are too weak when
they are of O(ε2) [6]. Second, it turns out that much of the rich pulse dynamics exhibited
by system (1.4) exists also when the parameters have O(ε) values, as we will show in this
article (see also [19]). Therefore, one might reasonably hope to understand the origins of the
dynamics observed in [15] by beginning with the present analysis. Third, in the numerical
simulations of [22,15], which were done on bounded domains, the W variable stays near
−0.8, approximately. Hence, in a very approximate (and rough) sense one might argue, as
follows, that there is an effective impact of the parameters in the U -equation of (1.4) that is
of O(ε). Since κ̃3 = 0.5 and ε = 1

10

√
5 ≈ 0.22, the effect of V in this equation can indeed

be considered to be O(ε). Moreover, by the scalings (1.3), κ̃4W̃ − κ̃1 ≈ 0.07 for W = −0.8
(and κ1,4 as in [15]), which is clearly also O(ε). Thus, it appears that the impact of the source
and coupling terms are indeed small.

In light of the above scalings, the model equations that we study are
⎧
⎨

⎩

Ut = ε2Uxx + U − U 3 − ε(αV + βW + γ )

τ Vt = Vxx + U − V
θWt = D2Wxx + U − W,

(1.6)

where we dropped the tildes. Furthermore, we require that 0 < ε � 1, 0 < τ, θ � 1/ε3,
D > 1, and α, β, γ ∈ R, where the upper bound on τ and θ is derived in Sect. 3.1. Moreover,
we assume that the solutions (U (x, t), V (x, t), W (x, t)) are bounded over the entire domain.

At various stages throughout the analysis, we will see that it is also useful to examine the
three-component model in a stretched (or ‘fast’) spatial variable ξ = x/ε:

⎧
⎪⎨

⎪⎩

Ut = Uξξ + U − U 3 − ε(αV + βW + γ )

τ Vt = 1
ε2 Vξξ + U − V

θWt = D2

ε2 Wξξ + U − W.

(1.7)

We refer to this system as the fast system, and to system (1.6) as the slow system.
The system (1.6) or (1.7) is well-suited as a paradigm for the analysis of three-component

RD systems. On the one hand, it is sufficiently nonlinear and complex so that it supports a
rich variety of localized structures, and on the other hand it is sufficiently simple, with linear
reaction functions in the second and third components and with linear coupling, so that much
of the dynamics can be computed analytically, including certain bifurcations. See also [23].
In this respect, we believe that the results presented here also provide a basis to establish a
theory of interacting pulses in this paradigm model.

1.2 Outline of the Main Results

We begin in Sect. 2 with examining the stationary, or standing, one-pulse solutions. For
these solutions, the U -component consists of a front, which connects the (quiescent) state
U = −1 +O(ε) to the (active) state U = 1 +O(ε), and a back, which provides the opposite
connection, concatenated together to form a pulse (or homoclinic orbit). Both the front and
the back are sharp, so that the pulse is highly localized, due to the asymptotically small value
of ε2 in (1.6). The V -component of the one-pulse solutions consists of a smooth pulse that

123



J Dyn Diff Equat (2009) 21:73–115 77

−1000 −500 0 500 1000
−1.5

−1

−0.5

0

0.5

1

1.5

−1000 −500 0 500 1000
−1.5

−1

−0.5

0

0.5

1

1.5

W
V

U
U

V

W

x x

Fig. 1 Stable stationary one-pulse and two-pulse solutions of system (1.6) obtained via numerical simula-
tion. For the one-pulse the system parameters are (α, β, γ, D, τ, θ, ε) = (3, 1, 2, 5, 1, 1, 0.01), and for the
two-pulse we had (α, β, γ, D, τ, θ, ε) = (2, −1, −0.25, 5, 1, 1, 0.01)

is centered on the middle of the interval in which the U -component is in the active state
and that varies over slightly wider interval than the U -pulse. Finally, the W -component also
consists of a single, smooth pulse, but it varies on a wider interval than either of the other
two components due to the fact that D > 1. See Fig. 1. The standing one-pulse solutions are
formally constructed in Sect. 2.2. Then, we make this construction rigorous in Theorem 2.1,
which states that the three-component model (1.6) possesses standing one-pulse solutions
whenever the system parameters satisfy (2.22). See Sect. 2.3 for the statement of this theorem
and Sect. 2.4 for its proof.

Next, we analyze the existence of travelling one-pulse solutions. This analysis, presented
in Sect. 3, follows the same two-step procedure: we first construct solutions formally (see
Sect. 3.1) and then we prove their existence rigorously (see Sects. 3.2 and 3.3). The main
result is Theorem 3.1, which states that there exist travelling pulse solutions whenever either
τ or θ (or both) is O(1/ε2) and the system parameters satisfy (3.13).

Given these results about standing and travelling one-pulse solutions, it is of interest to
investigate the bifurcation of the former into the latter. We do so in Sect. 4. The leading
order results are given by (4.2) in Sect. 4.1, and then the rigorous, high-order asymptotics
for the main bifurcation parameter τ as a function of the other parameters is summarized
in Lemma 4.1, see Sect. 4.2. It turns out that this bifurcation can be supercritical, as well as
subcritical, depending on the parameters, see Corollaries 4.2 and 4.3. This result contrasts
with the bifurcation result for the two-dimensional version of this model, obtained in [18],
where it was shown that this bifurcation is supercritical.

Having completed our analysis of the one-pulse solutions, we next turn our attention to
two-pulse solutions of (1.6). The main result is Theorem 5.1, which guarantees the existence
of two-pulse solutions whenever the system parameters satisfy (5.6). These two-pulse solu-
tions have U -components that consist of two copies of the U -component of the single pulses,
while the V - and W -components exhibit two peaks as well, but are not near equilibrium in
the interval between their two peaks. See Fig. 1. In this sense, the interaction between the
pulses is semi-strong, according to the terminology of [3]. We also note that (5.6) is rather
complex, and we present investigations of it when D = 2, and when D is general. Moreover,
we give the asymptotics of the key quantities as D → ∞. See Sects. 5.2 and 5.3, respectively.
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After completing the analysis of these pulse solutions, we examine in Sect. 6 the two-com-
ponent (U, V )-subsystem, obtained from (1.6) by setting W constant at −1. This analysis of
the two-component system enables us to make observations about the differences between the
two-component and the three-component systems. For instance, for the two-pulse solutions,
we observe that the inclusion of the third component is essential, because the two-component
version of the model cannot possess two-pulse solutions. Simply put, there is not enough free-
dom in the two-component model to permit for the construction of these solutions, and our
analysis reveals why the third component—which naturally makes the phase space of the asso-
ciated ODE problem six-dimensional—creates sufficient space/freedom for their existence.

In Sect. 7.1 we present the results of a series of numerical simulations of (1.6). These
simulations confirm the various analytical existence and bifurcation results presented herein,
and they also reveal the presence of rich pulse interactions, including pulse reflection and
annihilation, stable breathing single and double pulses (which bifurcate from stationary pulse
solutions), pulse scattering, as well as combinations of these. See Figs. 14–18. The single and
double pulses analyzed in this article are key building blocks to understand these rich pulse
interactions. Finally, in Sect. 7.2, we summarize our analysis and discuss some related items.

Remark 1.1 The two-pulse solutions constructed in [7,10] for the FHN system differ in
several respects from those constructed here. In FHN, these are essentially copies of the one-
pulse solution, that must be very far apart, and that exhibit oscillatory behavior in the interval
between the pulses. The mechanism responsible for their existence is related to the classical
Shilnikov mechanism.

Remark 1.2 Other examples of stabilization via the inclusion of an additional component
in a model are given for instance by the Gray–Scott and Gierer–Meinhardt systems. In these,
one-pulse (homoclinic) solutions that are unstable with respect to the scalar RD equation for
the activator component are stabilized in certain parameter regimes by the coupling to the
equation for the inhibitory component. The diffusive flux of inhibitor into the pulse domains
helps to localize the activator concentration, hence stabilizing one-pulse solutions, and we
refer to [3,5] for the mathematical analysis using the Evans function and the stability index.
Moreover, it is is worth noting that the converse may also arise; namely in [6] it is shown that
stable fronts of a bistable, scalar RD equation are destabilized through coupling to a second
component when the parameters are chosen so that either the essential spectrum approaches
the origin or an eigenvalue emerges from the essential spectrum and becomes unstable.

2 Stationary One-Pulse Solutions

2.1 Basic Observations

First, we look at stationary pulses of system (1.7), i.e., we put (Ut , Vt , Wt ) = (0, 0, 0). By
introducing p = uξ , q = 1

ε
vξ and r = D

ε
wξ , we transform system (1.7) into a six-dimen-

sional singular perturbed ordinary differential equation (ODE)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uξ = p
pξ = −u + u3 + ε(αv + βw + γ )

vξ = εq
qξ = ε(v − u)

wξ = ε
D r

rξ = ε
D (w − u).

(2.1)
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Although ξ is the spatial variable, it will play the role of ‘time’ in our analysis. The system
possesses two symmetries

ξ → −ξ, p → −p, q → −q, r → −r

u → −u, p → −p, v → −v, q → −q, w → −w, r → −r, γ → −γ. (2.2)

Note that the first symmetry corresponds to the reversibility symmetry (x, ξ) → (−x,−ξ)

in (1.6) and (1.7), respectively. The fixed points of system (2.1) have p = q = r = 0, and
u = v = w with u3 + u(−1 + ε(α + β)) + εγ = 0. Solving this last equation yields

u±
ε = ±1 ∓ 1

2
ε (α + β ± γ ) + O(ε2), u0

ε = εγ + O(ε2). (2.3)

Hence, there are three fixed points,

P±
ε = (u±

ε , 0, u±
ε , 0, u±

ε , 0), P0
ε = (u0

ε, 0, u0
ε, 0, u0

ε, 0). (2.4)

It can be checked [23] that P±
ε , respectively P0

ε , represent stable, respectively unstable, trivial
states of the PDE (1.6) and (1.7).

The fast reduced system (FRS) is obtained by letting ε ↓ 0 in (2.1),
{

uξ = p
pξ = −u + u3,

(2.5)

as well as (vξ , qξ , wξ , rξ ) = (0, 0, 0, 0), i.e., (v, q, w, r) ≡ (v∗, q∗, w∗, r∗) with v∗, q∗, w∗,
r∗ ∈ R constants. The fixed points of the FRS are given by (u, p) ∈ {(±1, 0), (0, 0)}. The
former are saddles. The latter, (0, 0), is a center that corresponds to P0

ε and thus to an unstable
trivial state of (1.6)—we will therefore not consider it.

We define the four-dimensional invariant manifolds M±
0 by

M±
0 := {(u, p, v, q, r, w) ∈ R

6 : u = ±1, p = 0},
which are the unions of the saddle points over all possible v∗, q∗, w∗, r∗ ∈ R. Planar system
(2.5) is integrable with Hamiltonian

H(u, p) = 1

2
(p2 + u2) − 1

4
(u4 + 1), (2.6)

which is chosen such that H(u, p) = 0 on M±
0 . The FRS possesses heteroclinic orbits

(u0,±
h (ξ), p0,±

h (ξ)) that connect the fixed points (u, p) = (±1, 0) to (u, p) = (∓1, 0),

u0,±
h (ξ) = ∓ tanh

(
1

2

√
2ξ

)

, p0,±
h (ξ) = ∓1

2

√
2sech2

(
1

2

√
2ξ

)

. (2.7)

See Fig. 2. The manifolds M±
0 are normally hyperbolic, and they have five-dimensional stable

and unstable manifolds W u,s(M±
0 ) that are the unions of the four-parameter (v∗, q∗, w∗, r∗)-

families of one-dimensional stable and unstable manifolds of the saddle points (u, p) =
(±1, 0) in (2.5).

Fenichel’s first persistence theorem [8,11,14] implies that for ε small enough, system
(2.1) has locally invariant slow manifolds M±

ε which are O(ε) C1-close to M±
0 , i.e., M±

ε

can be represented by

M±
ε := {u = ±1 + εu±

1 (v, q, w, r; ε), p = εp±
1 (v, q, w, r; ε)}, (2.8)
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-2 -1 1 2

-2

-1

1

2

Fig. 2 The phase portrait of the fast reduced Hamiltonian system (2.5)

where the graphs u1 and p1 can be computed by an expansion in ε,

M±
ε = {u = ±1 − 1

2
ε (αv + βw + γ ) + O(ε2), p = O(ε2)}. (2.9)

The application of Fenichel’s second persistence theorem establishes that M±
ε have five-

dimensional stable and unstable manifolds, W s,u(M±
ε ), that are O(ε) C1-close to their ε = 0

counterparts W u,s(M±
0 ). Observe that the critical points P±

ε have three-dimensional stable
and unstable manifolds W u,s(P±

ε ) which are contained in W u,s(M±
ε ).

There are two slow reduced limit systems (SRS), both of which we write in terms of the
fast variable ξ : one that governs the flow on M−

ε ,
{

vξξ = ε2(v + 1 + O(ε)),

wξξ = ε2

D2 (w + 1 + O(ε)),
(2.10)

and one that governs the flow on M+
ε ,

{
vξξ = ε2(v − 1 + O(ε)),

wξξ = ε2

D2 (w − 1 + O(ε)).
(2.11)

Observe that (v, q, w, r) = (±1, 0,±1, 0)+O(ε) are saddle points on M±
ε that correspond

to the fixed points P±
ε (2.4). Also note that the v- and w-equations are decoupled, so that

both ODEs can be considered separately. See also Remark 2.1. Hence, we have a (v, q)-
subsystem and a (w, r)-subsystem, both with two saddle points. These four saddle points
each have one-dimensional stable and unstable manifolds, lu,s,±

v,w , that are given to leading
order by

	u,±
v = {q = ∓1 + v}, 	u,±

w = {r = ∓1 + w},
	s,±
v = {q = ±1 − v}, 	s,±

w = {r = ±1 − w}. (2.12)

In Fig. 3, we sketch some orbits on the manifolds M±
ε .

2.2 The Construction of One-Pulse Solutions γ −
h, j (ξ) Homoclinic to P−

ε

In this section, we consider symmetric standing one-pulse solutions γ −
h, j (ξ) that are homo-

clinic to P−
ε . Here, we present the formal derivation. Then, in Sect. 2.3, we formulate a
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Fig. 3 The flow generated by the (v, q)-subsystem on M−
ε and that of the (w, r)-subsystem on M+

ε . Note
that stable/unstable manifolds lu,s,±

v and lu,s,∓
w have the same slopes

theorem based on this analysis—Theorem 2.1, and we prove this theorem in Sect. 2.4. This
proof also establishes the validity of the asymptotic analysis in this section. Note that orbits
homoclinic to the other fixed point P+

ε can be obtained from these orbits by application of
the symmetries (2.2).

Before we start with the construction of γ −
h, j (ξ), we introduce some notation. From Figs. 1

to 4, we notice that there are five different regions, three in which the leading order spatial
evolution is given by the SRS (2.10) and (2.11), and two regions that are governed by the
FRS (2.5). Since the PDEs are translation invariant, we may parametrize the pulse solution
so that its u, v, w-components are at a local extremum at ξ = 0, i.e., p−

h, j (0) = q−
h, j (0) =

r−
h, j (0) = 0—we will find that v−

h, j (0) and w−
h, j (0) are maxima, while u−

h, j (0) is a (local)
minimum. Moreover, we introduce ξ∗ as the position of the ‘jump mid-point(s)’, more pre-
cisely ξ∗ is such that γ −

h, j (ξ) is half-way between the two slow manifolds at ξ = ξ∗, i.e.,

u−
h, j = 0 at ξ = ±ξ∗ (2.2). We will find that ξ∗ = O( 1

ε
), but at this point of the analysis it is

still undetermined. Next, we define the two ‘fast intervals’ I ∓
f and the three ‘slow intervals’

I ∓
s , I 0

s ,

I −
f :=

(
−ξ∗ − 1√

ε
,−ξ∗ + 1√

ε

)
, I +

f :=
(
ξ∗ − 1√

ε
, ξ∗ + 1√

ε

)
,

I −
s :=

(
−∞,−ξ∗ − 1√

ε

]
, I 0

s :=
[
−ξ∗ + 1√

ε
, ξ∗ − 1√

ε

]
, I +

s :=
[
ξ∗ + 1√

ε
,∞

)
.

(2.13)

Note that the choice of the width for I ±
f of 2/

√
ε is standard, but arbitrary. We can now give

a more precise definition of the five regions mentioned above (see Fig. 4).

1. The dynamics take place exponentially close to the slow manifold M−
ε : ξ ∈ I −

s .
2. The dynamics take place in the fast field: ξ ∈ I −

f .

3. The dynamics take place exponentially close to M+
ε : ξ ∈ I 0

s .
4. The dynamics take place in the fast field: ξ ∈ I +

f .
5. The dynamics take place exponentially close to M−

ε : ξ ∈ I +
s .

By definition,

γ −
h, j = (u−

h, j , p−
h, j , v

−
h, j , q−

h, j , w
−
h, j , r−

h, j ) ∈ W u(P−
ε ) ∩ W s(P−

ε ) ⊂ W u(M−
ε ) ∩ W s(M−

ε ),

while the jump mid-points are defined by

γ −
h, j (±ξ∗) = (0,∓p∗, v∗,∓q∗, w∗,∓r∗).
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Fig. 4 A schematic sketch of a standing pulse solution γ −
h, j (ξ) in the six-dimensional (u, p, v, q, w, r)—

phase space. In region 1, the pulse is exponentially close to M−
ε for a long ‘spatial time’ and approaches P−

ε

as ξ → −∞. It ‘takes off’ from M−
ε at ξ = −ξ∗ − 1√

ε
(by definition) and ‘jumps’ through the fast field

(ξ ∈ I−
f ) towards M+

ε —this is region 2. In region 3, γ −
h, j (ξ) touches down near M+

ε at ξ = −ξ∗ + 1√
ε

and remains exponentially close to M+
ε until ξ = ξ∗ − 1√

ε
, from where it jumps back towards M−

ε , which

defines region 4 (ξ ∈ I+
f ). In the final region, 5, γ −

h, j (ξ) is again exponentially close to M−
ε and approaches

P−
ε as ξ → ∞. See also Fig. 1 in which γ −

h, j (ξ) exhibits the same structure

Furthermore, since γ −
h, j (ξ) remains exponentially close to M+

ε for ξ ∈ I 0
s , γh, j (ξ) is also

exponentially close to W u(P−
ε )∩W s(M+

ε ) and to W s(P−
ε )∩W u(M+

ε ) for sufficiently long
time. Note that γ −

h, j (ξ) /∈ W u(M−
ε ) ∩ W s(M+

ε ) or W s(M−
ε ) ∩ W u(M+

ε ), since it has to be
able to jump back again from M+

ε to M−
ε .

By considering possible take off and touch down points of jumps through the fast field and
by studying, in fact explicitly solving, the slow flows on M−

ε (2.10) and on M+
ε (2.11), we

obtain relations between the coordinates (v∗,∓q∗, w∗,∓r∗) of the jump mid-points and their
spatial positions ±ξ∗ that uniquely determine the homoclinic orbit(s) γ −

h, j (ξ); see Remark
2.1.

For ε �= 0, the Hamiltonian H(u, p) (2.6) is not conserved

d

dξ
H(u(ξ), p(ξ)) = uuξ + ppξ − u3uξ

= up + p
(−u + u3 + ε(αv + βw + γ )

)− u3 p (2.14)

= εp(αv + βw + γ ).

Since (u−
h, j (ξ), p−

h, j (ξ)) must be O(ε) close to the heteroclinic solution (u0,−
h (ξ), p0,−

h (ξ))

(2.7) of the FRS (2.5) in the fast field I −
f , the total change in H for an orbit γ −

h, j (ξ) that
jumps from M−

ε to M+
ε is approximated by


−
f H(v∗, q∗, w∗, r∗) =

∫

I −
f

Hξ dξ

=
∫

I −
f

εp0,−
h (ξ + ξ∗)(αv∗ + βw∗ + γ )dξ + O(ε

√
ε)
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= ε(αv∗ + βw∗ + γ )

∞∫

−∞
p0,−

h (ξ)dξ + O(ε
√

ε)

= 2ε(αv∗ + βw∗ + γ ) + O(ε
√

ε),

where we have used (2.7), (2.14), and assumed that ξ∗ = O( 1
ε
). Note that 
−

f H in principle
depends on (v∗, q∗, w∗, r∗), the slow (v, q, w, r)-coordinates of the jump mid-points, and
that these coordinates do not vary to leading order during a jump through the fast field,


−
f v = ∫

I −
f

vξ dξ = ∫

I −
f

εqdξ = 2q∗
√

ε + O(ε) = O(
√

ε),


−
f q = ∫

I −
f

qξ dξ = ∫

I −
f

ε(v − u)dξ = 2v∗
√

ε + O(ε) = O(
√

ε),


−
f w = ∫

I −
f

wξ dξ = ∫

I −
f

ε
D rdξ = 2r∗ 1

D

√
ε + O(ε) = O(

√
ε),


−
f r = ∫

I −
f

rξ dξ = ∫

I −
f

ε
D (w − u)dξ = 2w∗ 1

D

√
ε + O(ε) = O(

√
ε).

(2.15)

On the other hand, such an orbit γ −
h, j (ξ) cannot have a total change of more than O(ε2) over

a jump through the fast field I −
f , since

H(u, p)|M±
ε

= 1

2

((

±1 − 1

2
ε(αv + βw + γ ) + O(ε2)

)2

+ O(ε2)2

)

−1

4

((

±1 − 1

2
ε(αv + βw + γ ) + O(ε2)

)4

+ 1

)

= 1

2
∓ 1

2
ε(αv + βw + γ ) − 1

4
± 1

2
ε(αv + βw + γ ) − 1

4
+ O(ε2) = O(ε2),

(2.16)

where we recall (2.8) and (2.9). Thus, we conclude that for an orbit γ −
h, j (ξ) that jumps from

M−
ε to M+

ε the following relation for the slow (v∗, q∗, w∗, r∗)-coordinates of the jump
mid-point must hold to leading order

αv∗ + βw∗ + γ = 0. (2.17)

Note that 
−
f H(v∗, q∗, w∗, r∗) is in fact a Melnikov function that measures the distance

between W u(M−
ε ) and W s(M+

ε ) as they intersect the {u = 0} hyperplane (see [3,6,20]).
Condition (2.17) determines the three-dimensional set of initial conditions in {u = 0} that
defines the four-dimensional intersection of the two five-dimensional manifolds W u(M−

ε )

and W s(M+
ε ) (recall that the phase space is six-dimensional and that the p-coordinates of

these initial conditions are necessarily O(ε) close to p0,−
h (0) = 1

2

√
2 (2.7)).

By the reversibility symmetry (2.2), we know that (2.17) also must hold for the (v∗,−q∗,
w∗,−r∗)-coordinates, which are the coordinates of the jump mid-points of the orbits that
jump from M+

ε to M−
ε near ξ = ξ∗.

Next, we study the slow flows on M±
ε . The Eqs. 2.10 and 2.11 for these flows are linear

and decoupled, thus we may solve for v and w separately. Based on the above analysis, we
write down the following boundary conditions for the solutions in regions 1, 3, and 5:
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vh(±∞) = −1, vh

(
−ξ∗ ± 1√

ε

)
= vh

(
ξ∗ ∓ 1√

ε

)
= v∗ + O(

√
ε),

qh(±∞) = 0, qh

(
−ξ∗ ± 1√

ε

)
= −qh

(
ξ∗ ∓ 1√

ε

)
= q∗ + O(

√
ε),

wh(±∞) = −1, wh

(
−ξ∗ ± 1√

ε

)
= wh

(
ξ∗ ∓ 1√

ε

)
= w∗ + O(

√
ε),

rh(±∞) = 0, rh

(
−ξ∗ ± 1√

ε

)
= −rh

(
ξ∗ ∓ 1√

ε

)
= r∗ + O(

√
ε),

(2.18)

see Figs. 1 and 4. Note that there are more (boundary) conditions than free parameters in the
general solutions of (2.10) and (2.11). As a consequence, we find that both v∗ and q∗, as well
as w∗ and r∗, must be related,

q∗ = v∗ + 1, r∗ = w∗ + 1, (2.19)

which in geometrical terms is equivalent to (v∗, q∗) ∈ 	u,−
v , and (w∗, r∗) ∈ 	u,−

w (2.12), see
also Fig. 3. Moreover, (2.18) yields additional relations between v∗ and ξ∗ and between w∗
and ξ∗,

v∗ = −A2, w∗ = −A
2
D where A = e−εξ∗ . (2.20)

Observe that, since ξ∗ > 0, A ∈ (0, 1), so that v∗, w∗ ∈ (−1, 0). For (v∗, q∗, w∗, r∗) and ξ∗
that satisfy (2.18), (2.19) and (2.20), we obtain the explicit (slow) solutions,

vh(ξ) =
⎧
⎨

⎩

2eεξ sinh εξ∗ − 1 in 1,
−2e−εξ∗ cosh εξ + 1 in 3,

2e−εξ sinh εξ∗ − 1 in 5,
wh(ξ) =

⎧
⎨

⎩

2e
ε
D ξ sinh ε

D ξ∗ − 1 in 1,
−2e− ε

D ξ∗ cosh ε
D ξ + 1 in 3,

2e− ε
D ξ sinh ε

D ξ∗ − 1 in 5
(2.21)

to leading order in ε. Thus, together with the Melnikov condition (2.17), the boundary con-
ditions (2.18) imply three relations between v∗, w∗, and ξ∗. These relations combine into the
following jump condition on A,

αA2 + β A
2
D = γ + O(

√
ε). (2.22)

A solution A ∈ (0, 1) of this equation uniquely determines the jump mid-points (v∗,∓q∗, w∗,
∓r∗) in phase space of a homoclinic solution γ −

h, j (ξ), as well as their spatial positions ±ξ∗
(2.20).

Remark 2.1 We comment briefly on the coupling between the V - and W -components and
on the related fact that the homoclinic orbits are isolated. In the PDE (1.7), the variables V
and W seem to be only coupled through the equation for U . In the construction of γ −

h, j (ξ),
this coupling induces the Melnikov condition (2.17) and gives a natural relationship between
the v∗- and w∗-coordinates of the jump mid-points. However, we observe that there is an
additional geometrically induced coupling between these two components that is not directly
obvious from the equations. In particular, the jump mid-points ξ∗ must be the same for both
the v- and w-components in (2.1), which implies that also the ‘time-of-flight’ along the slow
manifolds must be the same for both the v- and w-components, since the parametrizations
of all of the components of a homoclinic orbit γ −

h, j (ξ) are of course the same. Hence, from
among the entire one-parameter set of pairs (v∗, w∗) that satisfy the Melnikov condition
(2.17), a unique pair, with v∗ = −(−w∗)D (2.20), is selected by this ‘time-of-flight’ con-
straint. Together, the two constraints determine the values of v∗ and w∗ uniquely and thus
establish that the homoclinic orbits are isolated.

123



J Dyn Diff Equat (2009) 21:73–115 85

2.3 Existence Theorem

Based on the analysis of the previous section, we can formulate the following existence result:

Theorem 2.1 Let (α, β, γ, D, τ, θ, ε) be such that (2.22) has K solutions A j ∈ (0, 1) (K ∈
{0, 1, 2}), and let ε be small enough. If K = 0, there are no symmetric orbits homoclinic to
P−

ε in system (2.1). If K > 0, then there are K symmetric homoclinic orbits γ −
h, j (ξ), j ∈

{1, K } to P−
ε that have a structure as sketched in Fig. 4, i.e., the orbits γ −

h, j (ξ) consist of
five distinct parts, two fast parts in which it is O(ε) close to a fast reduced heteroclinic
orbits (u0,∓

h (ξ ∓ ξ∗), p0,±
h (ξ ∓ ξ∗), v∗,±q∗, w∗,±r∗) (2.7) with (v∗, q∗, w∗, r∗) given by

(2.19) and (2.20), and three slow parts in which (u−
h, j (ξ), p−

h, j (ξ)) = (±1, 0) + O(ε) and

(v−
h, j (ξ), q−

h, j (ξ), w−
h, j (ξ), r−

h, j (ξ)) are given by (2.21), up to O(
√

ε)-corrections, with

ξ∗ = ξ∗, j = −1

ε
log A j = O

(
1

ε

)

. (2.23)

The orbits γ −
h, j (ξ) correspond to stationary pulse solutions

(U (ξ, t), V (ξ, t), W (ξ, t)) ≡ (uh, j (ξ), vh, j (ξ), wh, j (ξ)),

of (1.7).
Moreover, if |αD| > |β| and sgn(α) �= sgn(β), then a saddle-node bifurcation of homo-

clinic orbits occurs, to leading order in ε, as γ crosses through

γc1(α, β, D) = (−α)−
1

D−1 β
D

D−1

(
D− 1

D−1 − D− D
D−1

)
> 0 for α < 0 < β,

γc2(α, β, D) = α− 1
D−1 (−β)

D
D−1

(
D− D

D−1 − D− 1
D−1

)
< 0 for β < 0 < α.

(2.24)

The explicit expressions for the values γc1,2 of the saddle-node bifurcations are based on a
straightforward leading order analysis: set the partial derivative of (2.22) with respect to A
equal to zero to obtain

Ac = A1(α, β, D) =
(

−αD

β

)− 1
2

D
D−1 ∈ (0, 1), (2.25)

and then insert this expression back into formula (2.22) to obtain γc1,2 (2.24).
In Fig. 5, the relations between A j and γ as solutions of (2.22) have been plotted. The

two saddle-node cases at Ac described by the theorem are also clearly visible. Two other

Fig. 5 A graphical representation of the jump condition (2.22) and the associated saddle-node bifurcations
as described by Theorem 2.1 for α < 0 < β (with α + β > 0) and for β < 0 < α (also with α + β > 0).
Note that AK ∈ (0, 1) for all parameter combinations
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bifurcations occur: one at γ = A = 0, which corresponds to ξ∗ = ∞ (2.23), i.e., the plateau
at which the U -component of the one-pulse solution is near 1 becomes infinitely long; the
other at γ = α + β, A = 1, where the pulse becomes infinitely thin – see also Lemma 2.1
below.

2.4 The Proof of Theorem 2.1

The existence of the homoclinic orbit γ −
h, j (ξ) ⊂ W u(P−

ε ) ∩ W s(P−
ε ) will be established by

studying W u(M−
ε ) and W u(P−

ε ) as they pass along M+
ε . The reversibility symmetry (2.2)

plays a crucial role in the proof.
The manifold W u(P−

ε ) is three-dimensional, so that all orbits γ −
P (ξ) ⊂ W u(P−

ε ) can be
represented by a two-parameter family, γ −

P (ξ) = γ −
P (ξ ; v∗, w∗), where (v∗, w∗) represents

the jump mid-point. Of course, we only consider the part of W u(P−
ε ) that is spanned by

orbits γ −
P (ξ) that are O(ε) close to a heteroclinic solution of the FRS (2.5) away from M−

ε

and M+
ε , i.e., we do not pay attention to the other ‘half’ of W u(P−

ε ) that is spanned by
solutions with a monotonically decreasing u-coordinate—see Fig. 2. More precisely, γ −

P (ξ)

is exponentially close to M−
ε for asymptotically large, negative values of ξ , jumps away as

ξ increases, and crosses through the {u = 0} hyperplane at

γ −
P (−ξP,∗) = γ −

P (−ξP,∗(v∗, w∗)) = (0, p∗, v∗, q∗, w∗, r∗). (2.26)

Note thatγ −
P (ξ ; v∗, w∗)must be exponentially close to the slow unstable manifold W u

slow(P−
ε )

⊂ M−
ε that is spanned by 	u,−

v and 	u,−
w (2.12), so that q∗ = v∗ + 1, r∗ = w∗ + 1 as in

(2.19). Moreover, we note that this family of orbits γ −
P (ξ ; v∗, w∗) with finite pairs (v∗, w∗)

has as its natural geometric completion the slow unstable manifold W u
slow(P−

ε ) ⊂ Mε in the
limit that |v∗| → ∞ and |w∗| → ∞ such that their ratio remains fixed.

Within W u(P−
ε ), there is a priori a one-parameter family of orbits that is forward asymp-

totic to M+
ε , because W u(P−

ε ) ∩ W s(M+
ε ) is the intersection of a three- and a five-dimen-

sional manifold in a six-dimensional space, i.e., W u(P−
ε ) ∩ W s(M+

ε ) is expected to be
two-dimensional. The Melnikov calculus [3,6,20] of the previous section implies that γ −

P (ξ ;
v∗, w∗) ⊂ W u(P−

ε ) ∩ W s(M+
ε ) if v∗ and w∗ are related by (2.17). By construction,

W u(P−
ε ) ∩ W s(M+

ε ) is spanned by γ −
het(ξ ; v∗) = γ −

P (ξ ; v∗, w∗(v∗)) with w∗(v∗) given
by (2.17).

The evolution of γ −
het(ξ ; v∗) near M+

ε is governed by the linear SRS (2.11). If v∗, w∗ ∈
(−1, 0), then γ −

het(ξ) intersects the {q = 0}-hyperplane (Fig. 3). We may assume that the
intersection γ −

het(ξ ; v∗)∩{q = 0} takes place at ξ = 0. This assumption determines the jump
mid-point ξhet,∗(v∗) = ξP,∗(v∗, w∗(v∗)). Moreover, it follows that ξhet,∗(v∗) > 0 (2.26).
For ξ > −ξhet,∗(v∗) + O(1/

√
ε), i.e., if γ −

het(ξ ; v∗) is exponentially close to M+
ε , the evo-

lution of the r -coordinate r−
het(ξ ; v∗) of γ −

het(ξ ; v∗) can be computed explicitly. For general
v∗, r−

het(0; v∗) �= 0, but there are special values of v∗ such that r−
het(0; v∗) = 0. In fact,

r−
het(0; v∗) = 0 if and only if v∗ = −A2

0,∗, where A0,∗ solves an algebraic equation that is
to leading order given by (2.22). Note that this is in essence how (2.22) has been obtained.
However, also note that the relation (2.22) has been deduced for the so far only formally
constructed homoclinic orbit γ −

h, j (ξ) ⊂ W u(P−
ε ) ∩ W s(P−

ε ), while A0,∗ corresponds to

the heteroclinic orbit γ −
het(ξ ; v∗) ⊂ W u(P−

ε ) ∩ W s(M+
ε ). This is explained by the fact that

ξ j,∗, the position of the jump mid-point of γ −
h, j (ξ), is of O(1/ε) (2.23). Thus γ −

h, j (ξ) must be
exponentially close to M+

ε for an asymptotically long ‘time’. Hence, it must be exponentially
close to W s(M+

ε ). We define the (rigorously constructed) critical heteroclinic orbit γ −
0,∗(ξ)

by γ −
0,∗(ξ) = γ −

het(ξ ; v∗) with v∗ determined by A0,∗. Moreover, we observe that γ −
0,∗(ξ)
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is such that ‖γ −
h, j (ξ) − γ −

0,∗(ξ)‖ is exponentially small for ξ < 0; and |A j − A0,∗| is also

exponentially small, but nonzero. Note that γ −
0,∗(ξ) cannot be symmetric, since it remains

exponentially close to M+
ε for ξ > 0; this necessarily implies that p−

0,∗(0) �= 0.
Now assume that K �= 0, i.e., that there exits at least one solution A = A j ∈ (0, 1) of

(2.22), and that (α, β, γ, D) are such that W u(M−
ε ) and W s(M+

ε ) intersect transversely,
i.e., that γ is not asymptotically close to γc1,c2(α, β, D), the values at which the saddle-node
bifurcations occur (2.24). The above arguments imply that the heteroclinic orbit γ −

0,∗(ξ) ⊂
W u(P−

ε ) ∩ W s(M+
ε ) with A0,∗ = A j to leading order, exists and, by construction, that

γ −
0,∗(0) ∈ {q = r = 0}.

By definition, the orbit γ −
0,∗(ξ) for ξ ∈ (a, b) spans a curve �−

0,∗(a, b) ⊂ R
6, and

there is a three-dimensional tube T −
0,∗ ⊂ W u(P−

ε ) around �−
0,∗(a, b) (for any −∞ < a <

b ≤ ∞) which consists of all orbits γ −(ξ ; v∗, w∗) ⊂ W u(P−
ε ) with (v∗;w∗) so close to

(−A2
0,∗, w∗(−A2

0,∗)) that

sup
ξ≤− 1

2 ξ0,∗
‖γ −(ξ ; v∗, w∗) − γ −

0,∗(ξ)‖ < e
− 1√

ε ,

where −ξ0,∗ = −ξhet,∗(v∗), the position of the jump mid-point of γ −
0,∗(ξ). The existence

of T −
0,∗ follows from the continuous dependence on the initial conditions of solutions of

smooth ODEs (as (2.1) clearly is); T −
0,∗ defines an open neighborhood of �−

0,∗(a, b) for any

−∞ < a < b ≤ ∞ in the relative topology of W u(P−
ε ). Note that T −

0,∗ contains both

orbits that jump away from M+
ε O(

√
ε) close to γ −

0,∗(− 1
2 ξ0,∗)—these are the orbits close

to ∂T −
0,∗ that only remain close to M+

ε up to ξ = − 1
2 ξ0,∗ + O(1/

√
ε)—and orbits that are

exponentially close to M+
ε for arbitrarily long ‘time’—the orbits that are close enough to

γ −
0,∗(ξ). Note also that the ‘secondary’ jump mid-points, i.e., the points at which the orbits

γ −(ξ ; v∗, w∗) take off again from M+
ε , of all orbits in T −

0,∗ must be exponentially close to

the curve �−
0,∗(− 1

2 ξ0,∗,∞), that is itself exponentially close to M+
ε and is approximated, or

represented, by a part of a solution curve of (2.11)—compare to region 3 in Fig. 4 in which
the curve �−

0,∗(−ξ∗, ξ∗) is approximated.

The tube T −
0,∗ is stretched by the fast dynamics near M+

ε into a three-dimensional mani-
fold that is no longer exponentially small in the direction of the fast unstable eigenvalue of
M+

ε —see Remark 2.2. In fact, T −
0,∗ is exponentially close and parallel to W u(M+

ε ). Since
W u(M+

ε ) intersects W s(M−
ε ) transversely—which can be shown by the same Melnikov-

type arguments that established the intersection of W u(M−
ε ) and W s(M+

ε )—it follows that
T −

0,∗ ∩ W s(M−
ε ) exists as a two-dimensional submanifold of T −

0,∗. We label this manifold as

S−
0,∗; it consists of a one-parameter family of orbits γ −(ξ ; v∗, w∗) ⊂ W u(P−

ε ) ∩ W s(M−
ε ),

i.e., orbits in W u(P−
ε ) that are homoclinic to M−

ε . Since T −
0,∗ is exponentially close to γ −

0,∗(ξ)

for ξ ≤ − 1
2 ξ0,∗, and since γ −

0,∗(ξ) takes off from M−
ε at W u

slow(P−
ε ), it follows by the revers-

ibility symmetry (2.2) that the orbits in S−
0,∗ touch down on M−

ε close to W s
slow(P−

ε ), the
slow stable manifold of P−

ε in M−
ε that is spanned by 	s,−

v,w .
The existence of the homoclinic orbit γ −

h, j (ξ) is established if it can be shown that there is

an orbit γ −(ξ ; v∗, w∗) ⊂ S−
0,∗ that indeed touches down exactly on W s

slow(P−
ε ). This result

will follow from another application of the reversibility symmetry. The above construction of
the two-dimensional manifold S−

0,∗ ⊂ W u(P−
ε )∩ W s(M−

ε ), that is based on the heteroclinic

orbit γ −
0,∗(ξ) ⊂ W u(P−

ε ) ∩ W s(M+
ε ) and on the tube T −

0,∗, has a symmetric counterpart in
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the two-dimensional manifold S+
0,∗ ⊂ W s(P−

ε )∩ W u(M−
ε ), that is based on the heteroclinic

orbit γ +
0,∗(ξ) ⊂ W s(P−

ε ) ∩ W u(M+
ε ) and on the tube T +

0,∗. Note that by construction all

orbits in S+
0,∗ touch down (or: take off in backward ‘time’) on W s

slow(P−
ε ) ⊂ M−

ε . Thus,

γ −
h, j (ξ) exists if it can be shown that S−

0,∗ and S+
0,∗ intersect.

To show this, we first note that

S−
0,∗ ∩ S+

0,∗ = T −
0,∗ ∩ T +

0,∗ ⊂ W u(P−
ε ) ∩ W s(P−

ε ),

since orbits in T −
0,∗ that are also in T +

0,∗ ⊂ W s(P−
ε ) ⊂ W s(M−

ε ) must, by definition, lie

inside S−
0,∗. Moreover,

dim
(
S−

0,∗ ∩ S+
0,∗
)

= dim
(
T −

0,∗ ∩ T +
0,∗
)

= 1.

Since both S±
0,∗ consist of solutions of (2.1), the dimension of S−

0,∗ ∩S+
0,∗ cannot be zero, i.e.,

S−
0,∗ ∩ S+

0,∗ cannot be a point. It also cannot be two, which would imply that the two-dimen-

sional sets S±
0,∗ coincide. This is not the case, since S±

0,∗ are, as subsets of T ±
0,∗, stretched

like T ±
0,∗, thus S−

0,∗ is parallel to W u(M+
ε ) and S+

0,∗ to W s(M+
ε ). Hence, we may conclude

that we have proved the existence of the (locally) uniquely determined homoclinic orbit
γh, j (ξ) ⊂ W u(P−

ε ) ∩ W s(P−
ε ), if we have shown that T −

0,∗ and T +
0,∗ intersect.

This follows from the local stretching of the tubes T −
0,∗ and T +

0,∗ near M+
ε . To see

this, we consider the curves �−
0,∗(− 1

2 ξ0,∗, 1
2 ξ0,∗) and �+

0,∗(− 1
2 ξ0,∗, 1

2 ξ0,∗) that are associ-

ated to γ −
0,∗(ξ) and γ +

0,∗(ξ) (note that γ +
0,∗(ξ) jumps at +ξ0,∗ by (2.2)). By construction,

�−
0,∗(− 1

2 ξ0,∗, 1
2 ξ0,∗) and �+

0,∗(− 1
2 ξ0,∗, 1

2 ξ0,∗) are exponentially close to each other and expo-

nentially close to M+
ε . The tube T −

0,∗ is stretched in the direction of the fast unstable eigen-

value of M+
ε near �±

0,∗(− 1
2 ξ0,∗, 1

2 ξ0,∗) and is exponentially close to W u(M+
ε ), while T +

0,∗
is stretched in the direction of the fast stable eigenvalue of M+

ε near �±
0,∗(− 1

2 ξ0,∗, 1
2 ξ0,∗)

and is exponentially close to W u(M+
ε ). Moreover, both three-dimensional manifolds T ±

0,∗
extend to two sides – {u < 1} and {u > 1} – of M+

ε near �±
0,∗(− 1

2 ξ0,∗, 1
2 ξ0,∗), since they

both contain orbits that are asymptotic to M+
ε . Thus, T −

0,∗ and T +
0,∗ must have a nontrivial

intersection. This completes the proof for K > 0.
Observe that the left hand side of (2.22) has at most one extremum for A ∈ (0, 1), namely

A =
(

−αD

β

)− 1
2

D
D−1

,

see (2.25). Therefore, K cannot be more than two.
Finally, we briefly consider the situation in which K = 0, i.e., in which there is no solution

A ∈ (0, 1) of (2.22). In this case, the critical heteroclinic orbits γ ∓
0,∗(ξ) cannot be constructed,

and it follows immediately that W u(P−
ε )∩W s(P−

ε ) = ∅. The saddle-node bifurcations occur
at the transition from K = 2 to K = 0 and must be locally unique by the C1-smoothness
with respect to ε of the stable and unstable manifolds of M±

ε and P±
ε [8,9]. ��

Remark 2.2 In [12,13], the stretching and squeezing associated to the passage of an invari-
ant manifold along a slow manifold are described by the Exchange Lemma. This lemma can
be used to study the deformation of W u(P−

ε ) as it passes along M+
ε . Indeed, one may verify

explicitly that the sets of touch down points of the tracked manifold on the slow manifolds
are transverse to the flows on those manifolds. However, we have chosen for a somewhat
more direct approach here.
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2.5 Explicit Analysis of the Number K of Stationary One-Pulse Solutions

Theorem 2.1 above establishes that K ≤ 2. In this section, we carry out a straightforward
analysis of the jump condition (2.22) to derive explicit results for the number (K ) of station-
ary one-pulse solutions in (1.6) for a given set of parameters. The following lemma is an
example; it is stated without proof.

Lemma 2.1 Let (α, β, γ, D, τ, θ, ε) be such that |αD| > |β|. Then, for ε > 0 small enough,
and γc1,c2 as given in (2.24), we have

(a1) if sgn(α) = sgn(β), sgn(γ ) = sgn(α), and |γ | < |α + β|, then K = 1.
(a2) if sgn(α) = sgn(β), sgn(γ ) = sgn(α), and |γ | > |α + β|, then K = 0.
(a3) if sgn(α) = sgn(β) and sgn(γ ) �= sgn(α), then K = 0.
(b1) if sgn(α) = −1 = −sgn(β), α + β > 0, and sgn(γ ) = −1, then K = 0.
(b2) if sgn(α) = −1 = −sgn(β), α + β > 0, and 0 < γ < α + β, then K = 1.
(b3) if sgn(α) = −1 = −sgn(β), α + β > 0, and α + β < γ < γc1, then K = 2.
(b4) if sgn(α) = −1 = −sgn(β), α + β > 0, and γ > γc1, then K = 0.
(c1) if sgn(α) = −1 = −sgn(β), α + β < 0, and γ < α + β, then K = 0.
(c2) if sgn(α) = −1 = −sgn(β), α + β < 0, and α + β < γ < 0, then K = 1.
(c3) if sgn(α) = −1 = −sgn(β), α + β < 0, and 0 < γ < γc1, then K = 2.
(c4) if sgn(α) = −1 = −sgn(β), α + β < 0, and γ > γc1, then K = 0.
(d1) if sgn(α) = 1 = −sgn(β), α + β > 0, and γ < γc2, then K = 0.
(d2) if sgn(α) = 1 = −sgn(β), α + β > 0, and γc2 < γ < 0, then K = 2.
(d3) if sgn(α) = 1 = −sgn(β), α + β > 0, and 0 < γ < α + β, then K = 1.
(d4) if sgn(α) = 1 = −sgn(β), α + β > 0, and γ > α + β, then K = 0.
(e1) if sgn(α) = 1 = −sgn(β), α + β < 0, and γ < γc2, then K = 0.
(e2) if sgn(α) = 1 = −sgn(β), α + β < 0, and γc2 < γ < α + β, then K = 2.
(e3) if sgn(α) = 1 = −sgn(β), α + β < 0, and α + β < γ < 0, then K = 1.
(e4) if sgn(α) = 1 = −sgn(β), α + β < 0, and γ > 0, then K = 0.

See also Fig. 5, where we plotted (2.22) for certain parameter combinations. The left frame
represents the cases (b1)–(b4), the right frame (d1)–(d4).

3 Travelling Pulse Solutions

In this section, we establish the existence of localized one-pulse solutions to (1.6) that travel
with a fixed, well-determined, speed. As in the previous section, we will construct these
pulses as homoclinic orbits γ −

tr, j (ξ) to the critical point P−
ε .

3.1 The Formal Construction of Travelling One-Pulse Solutions, γ −
tr, j (ξ)

We introduce the moving coordinates η = x − ε2ct and, with a slight abuse of notation, set
ξ = η/ε, so that (1.6) reduces to the six-dimensional dynamical system,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uξ = p
pξ = −u + u3 + ε(αv + βw + γ − cp)

vξ = εq
qξ = ε(v − u) − ε3cτq
wξ = ε

D r

rξ = ε
D (w − u) − ε3

D2 cθr,

(3.1)
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with an additional parameter c for the speed of the travelling pulse. The structure of this equa-
tion justifies our choice for the magnitude of c (= O(ε2)). With this scaling, the perturbation
of the fast (u, p)-subsystem induced by c is of the same order as the perturbations induced
by the V, W -components in the U -equation of (1.6). Note that, unlike (2.1), (3.1) depends
explicitly on the parameters τ and θ . However, the critical points of (3.1) are identical to
those of (2.1) and, thus, given by (2.4).

The fast reduced system is identical to (2.5), as long as τ, θ � 1
ε3 , and is thus again

governed by the Hamiltonian H(u, p) (2.6). For any c of O(1), system (3.1) possesses two
invariant slow manifolds and their associated stable and unstable manifolds, which we denote,
with a slight abuse of notation, by M±

ε and W s,u(M±
ε ). Although M±

ε depend on c, the lead-
ing and first order approximations of M±

ε are still given by (2.8) and (2.9), so that it again
follows that H(u, p)|M±

ε
= O(ε2) (2.16).

However, there are two significant differences between (3.1) and (2.1). First, (3.1) does
not have the reversibility symmetry of (2.1) for c �= 0. As a consequence, we cannot expect
to find symmetric pulses and, more importantly, we cannot exploit the symmetry in the con-
struction of the pulse and in the associated validity proof. However, system (3.1) does inherit
the symmetry,

ξ → −ξ, p → −p, q → −q, r → −r and c → −c, (3.2)

which implies that the travelling pulses do not have a preferred direction, i.e., to any pulse
travelling with speed c > 0, there is a symmetrical counterpart that travels with speed c < 0.
Second,

d

dξ
H(u(ξ), p(ξ)) = εp(αv + βw + γ − cp), (3.3)

instead of (2.14), which implies that the Melnikov conditions will depend in an O(1) fashion
on c—which also further validates our scaling of the magnitude of the speed of the pulses.

As in Sect. 2.2, we define the position of the jump mid-points of γ −
tr, j (ξ) to be ∓ξ∗, i.e.,

γ −
tr, j (ξ) crosses the hyperplane {u = 0} at ξ = ∓ξ∗ (ξ∗ > 0). The coordinates of the jump

mid-points are defined by

γ −
tr, j (∓ξ∗) = (0, p∓∗ , v∓∗ , q∓∗ , w∓∗ , r∓∗ ). (3.4)

Unlike the symmetric stationary case, the coordinates of the jump through the fast field from
M−

ε to M+
ε , denoted by (p−∗ , v−∗ , q−∗ , w−∗ , r−∗ ), will differ from those of the jump back from

M+
ε to M−

ε , denoted by (p+∗ , v+∗ , q+∗ , w+∗ , r+∗ ). Moreover, the middle of the pulse, γ −
tr, j (0),

has become slightly artificial by this definition, in the sense that ξ = 0 does not in general
correspond to an extremum of any of the U -, V - or W -components in (1.6). Nevertheless,
with this definition we can use the same partition of the homoclinic orbit γ −

tr, j (ξ) into five

regions—see Sect. 2.2—with I ∓
f,s and I 0

s as in (2.13).
We again use the Melnikov function to measure the distance between W u(M−

ε ) and
W s(M+

ε ). We find, assuming that ξ∗ = O( 1
ε
),
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−
f H(v−∗ , q−∗ , w−∗ , r−∗ ) =

∫

I −
f

Hξ dξ

=
∫

I −
f

εp0,−
h (ξ + ξ∗)

(
αv−∗ + βw−∗ + γ − cp0,−

h (ξ + ξ∗)
)

dξ

+O(ε
√

ε)

= 2ε

(

αv−∗ + βw−∗ + γ − 1

3

√
2c

)

+ O(ε
√

ε),

where we have implicitly used that the slow coordinates (v, p, w, r) do not vary to leading
order during a jump through the fast field, i.e., that


∓
f v, 
∓

f p, 
∓
f w, 
∓

f q = O(
√

ε), (3.5)

(see 2.15). Since H(u, p)|M∓
ε

= O(ε2), we find as the first Melnikov condition,

αv−∗ + βw−∗ + γ = 1

3

√
2c. (3.6)

Since there is no reversibility symmetry, the second Melnikov condition for the jump from
M+

ε to M−
ε is slightly different,

αv+∗ + βw+∗ + γ = −1

3

√
2c, (3.7)

which follows from


+
f H(v+∗ , q+∗ , w+∗ , r+∗ ) =

∫

I +
f

Hξ dξ

=
∫

I +
f

εp0,+
h (ξ + ξ∗)

(
αv+∗ + βw+∗ + γ − cp0,+

h (ξ + ξ∗)
)

dξ

+O(ε
√

ε)

= 2ε

(

αv+∗ + βw+∗ + γ + 1

3

√
2c

)

+ O(ε
√

ε),

(compare p0,+
h (ξ) to p0,−

h (ξ)—(2.7)). Note that the jump conditions are consistent with the
symmetry (3.2).

We can proceed (formally) as in the stationary case. We solve the (linear) slow subsystems
explicitly, imposing boundary conditions like those in (2.18) at the boundaries of the three
slow regions (1, 3, and 5) and also imposing the Melnikov conditions (3.6) and (3.7). Here,
we present this analysis for the critical case τ, θ = O( 1

ε2 ), since travelling pulses can only

exist for these values of τ and θ . More precisely, if both τ, θ � 1
ε2 , then the flows on M±

ε

are symmetric to leading order and the only asymmetries in the construction of γ −
tr, j (ξ) are

introduced by the c’s in the Melnikov conditions (3.6) and (3.7). From this, it follows that
c = 0, i.e., that γ −

tr, j (ξ) = γ −
h, j (ξ), the stationary pulse—see Remark 3.1.

Thus, we introduce τ̂ and θ̂ by

τ̂ = ε2τ � 1

ε
, θ̂ = ε2θ � 1

ε
.
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Fig. 6 The asymmetric slow flows for the (v, q)-subsystem on M−
ε (left) and the (w, r)-subsystem on M+

ε
(right) for c positive

The flows on M−
ε and M+

ε are, up to correction terms of O(ε3), given by
{

vξξ = −εcτ̂ vξ + ε2(v + 1),

wξξ = −εc θ̂
D2 wξ + ε2

D2 (w + 1),
and

{
vξξ = −εcτ̂ vξ + ε2(v − 1),

wξξ = −εc θ̂
D2 wξ + ε2

D2 (w − 1),

see Fig. 6. The eigenvalues λ±
v,w of the decoupled (v, q)- and (w, r)-subsystems are given

by

λ±
v = 1

2

(
−cτ̂ ±

√
c2τ̂ 2 + 4

)
, λ±

w = 1

2

1

D

⎛

⎝−cθ̂

D
±
√

c2θ̂2

D2 + 4

⎞

⎠ , (3.8)

which clearly establishes the asymmetric character of the flows on M±
ε (for τ̂ , θ̂ �= 0). The

stable and unstable manifolds of P±
ε restricted to M±

ε are spanned by

	u,±
v = {q = λ+

v (∓1 + v)}, 	u,±
w = {r = Dλ+

w(∓1 + w)},
	s,±
v = {q = λ−

v (∓1 + v)}, 	s,±
w = {r = Dλ−

w(∓1 + w)}, (3.9)

(compare with (2.12)).
Since the slow (v, q, w, r)-coordinates do not vary to leading order during a jump through

the fast field (3.5), we can ‘match’ the solutions in the slow regions 1, 3, and 5 by imposing
boundary conditions as in (2.18). As in the stationary case, there are more boundary condi-
tions than free parameters. Hence, there are relations between the coordinates of the jump
mid-points,

(v−∗ , q−∗ ) ∈ 	u,−
v , (w−∗ , r−∗ ) ∈ 	u,−

w , (v+∗ , q+∗ ) ∈ 	s,−
v , (w+∗ , r+∗ ) ∈ 	s,−

w , (3.10)

as may be seen from the system geometry (see Fig. 7). Furthermore,

v±∗ = s±
v

(
e±2ελ∓

v ξ∗ − 1
)

− 1, w±∗ = s±
w

(
e±2ελ∓

wξ∗ − 1
)

− 1, (3.11)

with

s±
v = − 2λ±

v

λ±
v − λ∓

v

< 0, s±
w = − 2λ±

w

λ±
w − λ∓

w

< 0. (3.12)

(Note that (3.10) and (3.11) reduce to their stationary equivalents (2.19) and (2.20) if either
c = 0 or τ̂ = θ̂ = 0 – see Remark 3.1.) We conclude that for any given pair (c, ξ∗), the (slow)
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Fig. 7 A schematic sketch of a travelling pulse γ −
tr, j (ξ) homoclinic to P−

ε

coordinates (v∓∗ , q∓∗ , w∓∗ , r∓∗ ) of the jump mid-points are uniquely determined by the above
conditions combined with the matching conditions (3.5). Moreover, we have the following
leading order approximations of the v- and w-components of γ −

tr, j (ξ) in the slow regions (1,
3, 5),

vtr =

⎧
⎪⎨

⎪⎩

−2s−
v eελ+

v ξ sinh ελ+
v ξ∗ − 1 in 1,

s−
v eελ+

v (ξ−ξ∗) + s+
v eελ−

v (ξ+ξ∗) + 1 in 3,
2s+

v eελ−
v ξ sinh ελ−

v ξ∗ − 1 in 5,

wtr =

⎧
⎪⎨

⎪⎩

−2s−
w eελ+

wξ sinh ελ+
wξ∗ − 1 in 1,

s−
w eελ+

w(ξ−ξ∗) + s+
w eελ−

w(ξ+ξ∗) + 1 in 3,
2s+

w eελ−
wξ sinh ελ−

wξ∗ − 1 in 5,

see Fig. 7. The Melnikov conditions (3.6) and (3.7) impose two relations between c and ξ∗,
⎧
⎨

⎩

1
3

√
2c = α

(
s−
v

(
e−2ελ+

v ξ∗ − 1
)

− 1
)

+ β
(

s−
w

(
e−2ελ+

wξ∗ − 1
)

− 1
)

+ γ

− 1
3

√
2c = α

(
s+
v

(
e2ελ−

v ξ∗ − 1
)

− 1
)

+ β
(

s+
w

(
e2ελ−

wξ∗ − 1
)

− 1
)

+ γ.
(3.13)

A pair of solutions (c, ξ∗) to (3.13) with c �= 0 corresponds formally to a homoclinic solution
γ −

tr, j (ξ) of (3.1) and thus to a pulse solution of (1.6) that travels with speed ε2c.

Remark 3.1 If τ, θ � 1
ε2 , i.e., if τ̂ , θ̂ = 0 to leading order, then λ±

v = ±1, λ±
w = ± 1

D , and
s±
v = s±

w = −1, so that (3.13) reduces to

−1

3

√
2c = αA2 + β A

2
D − γ = 1

3

√
2c,

to leading order, with A as in (2.20). Hence, c = 0 and γ −
tr, j (ξ) = γ −

h, j (ξ) (2.22).

3.2 Existence Theorem for Travelling Pulse Solutions

Theorem 3.1 Let (α, β, γ, D, τ, θ, ε) be such that τ = τ̂
ε2 , θ = θ̂

ε2 , and assume that (3.13)
has K solution pairs (c j , (ξ∗) j ) with c j �= 0. Let ε > 0 be small enough. If K = 0, then
there are no homoclinic orbits to P−

ε in (3.1) with c �= 0. If K > 0, there are K homoclinic
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orbits γ −
tr, j (ξ), j ∈ {1, . . . , K }, to P−

ε in (3.1) that have a structure as sketched in Fig. 7 and

that correspond to travelling one-pulse solutions of (1.6) which travel with speed ε2c∗
j �= 0,

where c∗
j = c∗

j (ε) = c j + O(ε).

The proof of Theorem 3.1 is similar to that of Theorem 2.1 in Sect. 2.4. Nevertheless, there are
differences, especially since the proof of Theorem 2.1 strongly depended on the reversibility
symmetry in (2.1). The proof is given in Sect. 3.3.

Generically, K can be expected to be positive for open regions in the (α, β, γ, D, τ̂ , θ̂ )-
parameter space. However, a priori, it is not clear whether parameter combinations exist for
which K can be non-zero. In fact, though (3.13) is a relatively simple expression, it can—of
course—not be solved explicitly. Nevertheless, it can be evaluated, and the (open) region in
parameter space in which K �= 0 can be determined with a simple and reliable numerical
procedure. Moreover, (3.13) can be approximated asymptotically in various limit settings.
As an example, we consider the case

τ̂ = 1

δ
� 1, θ̂ = hδ � 1,

i.e., we assume that τ̂ is large and θ̂ is small, but both still O(1) with respect to ε. We
thus introduce an artificial second asymptotic parameter δ that is independent of ε such that
0 < ε � δ � 1. We further assume that all other parameters, including h, are O(1) with
respect to δ. We search for solutions (c, ξ∗) of (3.13) such that

c > 0, c = O(1), X∗ = εδξ∗ = O(1),

with respect to δ. Note that this implies that we look for homoclinic orbits that spend a long
‘time’ (O( 1

εδ
)) near M+

ε . It follows by a straightforward computation from (3.11) that,

v−∗ = −2e2 X∗
c (1+O(δ)) + 1 + O(δ), v+∗ = −1 + O(δ), w−∗ = O(δ), w+∗ = O(δ), (3.14)

so that (3.13) reduces to

1

3

√
2c = αv−∗ + γ + O(δ), −1

3

√
2c = −α + γ + O(δ).

Hence, there exists a homoclinic orbit γ −
tr,1(ξ) to P−

ε in (3.1) for α > γ with

c = c1 = 3

2

√
2(α − γ ) + O(δ, ε). (3.15)

Moreover, X∗,1, and thus (ξ∗)1, can be determined through v−∗ and (3.14). By the symmetry
(3.2), we conclude that K = 2 for τ̂ � 1, θ̂ � 1 and α > γ .

3.3 Proof of Theorem 3.1

The construction of

γ −
tr, j (ξ) ⊂ W u(P−

ε ) ∩ W s(P−
ε ) ⊂ W u(P−

ε ) ∩ W s(M−
ε )

is again based on a special heteroclinic orbit γ −∗,∗(ξ) ⊂ W u(P−
ε ) ∩ W s(M+

ε ), a tube T −∗,∗ ⊂
W u(P−

ε ) around it, their counterparts in backwards ‘time’ γ +∗,∗(ξ) ⊂ W s(P−
ε ) ∩ W u(M+

ε )

and T +∗,∗ ⊂ W S(P−
ε ), so that γ −

tr, j (ξ) ⊂ T −∗,∗ ∩ T +∗,∗.
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Fig. 8 Example of the construction of v−(v−∗ ), w−(v−∗ ), and r−(v−∗ )

For any c > 0 (fixed), W u(P−
ε ) is represented by the two-parameter family of orbits

γ −
P (ξ ; v−∗ , w−∗ ) ⊂ W u(P−

ε ). We know by the Melnikov analysis that there is a one-param-
eter subfamily of orbits γ −

het(ξ ; v−∗ ) = γ −
P (ξ ; v−∗ ;w−∗ (v−∗ )) ⊂ W u(P−

ε ) ∩ W s(M+
ε ), with

w−∗ (v−∗ ) determined by (3.6). The orbits γ −
het(ξ ; v−∗ ) follow the slow flow on M+

ε , and it can
be checked that those with v−∗ ∈ (−1, S−

v ) again cross the {q = 0}-hyperplane. Here, S−
v is

determined by the observation that (v−∗ , q−∗ ) ∈ lu,−
v in the (v, q)-subsystem on M−

ε (3.10),
while (v−∗ , q−∗ ) must be to the left of ls,+

v in the (v, q)-subsystem on M+
ε so that γ −

het(ξ ; v−∗ )

may cross through {q = 0}; a similar condition must hold for (w−∗ (v−∗ ), r−∗ ) in the (w, r)-
subflows on M∓

ε – see Fig. 7. For each v−∗ ∈ (−1, S−
v ) the intersection of γ −

het(ξ ; v−∗ ) with
{q = 0} occurs by definition at ξ = ξ−

het(v
−∗ ) ∈ (−ξ∗, ξ∗), and these intersections define a

one-dimensional curve denoted by

Z− = {(u−(v−∗ ), p−(v−∗ ), v−(v−∗ ), 0, w−(v−∗ ), r−(v−∗ ))

= γ −
het(ξ

−
het; v−∗ )) : v−∗ ∈ (−1, S−

v )}, (3.16)

see Fig. 8, where one point on Z− is illustrated, since v−∗ is fixed in the figure. The curve Z−
is by construction exponentially close to M+

ε , and its projection on M+
ε is given by

Z−
slow = {(1 + εu+

1 (v−, 0, w−, r−), p+
1 (v−, 0, w−, r−), v−, 0, w−, r−) : v−∗ ∈ (−1, S−

v )},
see (2.8).

We perform the same construction in backwards (spatial) time and define the one-param-
eter family of orbits γ +

het(ξ ; v+∗ ) ∈ W s(P−
ε )∩ W u(M+

ε ) by (3.7), the one-dimensional curve
Z+ = {(u+(v+∗ ), p+(v+∗ ), v+(v+∗ ), 0, w+(v+∗ ), r+(v+∗ ))} ⊂ {q = 0}, and its projection
Z+

slow on M+
ε . The (w, r)-components of Z±

slow define two curves, that typically intersect,
i.e., the condition (w−(v−∗ ), r−(v−∗ )) = (w+(v+∗ ), r+(v+∗ )) determines for each given c a
discrete number of critical values (v−∗,∗(c), v+∗,∗(c)). However, for general c, the one-dimen-
sional curves Z−

slow and Z+
slow do not intersect within the three-dimensional manifold M+

ε ,
i.e., v−(v−∗,∗(c)) �= v+(v+∗,∗(c)) in general. Nevertheless, the combined condition,

(v−(v−∗ (c)), w−(v−∗ (c)), r−(v−∗ (c))) = (v+(v+∗ (c)), w+(v+∗ (c)), r+(v+∗ (c))), (3.17)

in principle determines discrete critical values c j of c for which Z−
slow and Z+

slow intersect
(transversely) in M+

ε . It is a matter of straightforward calculations to show that (3.17) is
equivalent to (3.13).

The present construction is computationally more cumbersome than that of Sect. 3.1, but
its character is more geometrical and it can thus be more easily extended into a validity proof.
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To do so, we define (for any c) the special heteroclinic orbits γ −∗,∗(ξ ; c) = γ −
het(ξ ; v−∗,∗) ⊂

W u(P−
ε ) ∩ W s(M+

ε ) and γ +∗,∗(ξ ; c) = γ +
het(ξ ; v+∗,∗) ⊂ W s(P−

ε ) ∩ W u(M+
ε ). The tube

T −∗,∗(c) ⊂ W u(P−
ε ) is spanned by those orbits γ −

P (ξ ; v−∗ , w−∗ ) ⊂ W u(P−
ε ) that are exponen-

tially close to γ −∗,∗(ξ ; c) for ξ < 1
2 (−ξ∗+ξ−

het(v
−∗,∗)). Likewise, the tube T +∗,∗(c) ⊂ W s(P−

ε ) is
spanned by those orbits γ +

P (ξ ; v−∗ , w−∗ ) ⊂ W s(P−
ε ) that are exponentially close to γ +∗,∗(ξ ; c)

for ξ > 1
2 (ξ∗ + ξ+

het(v
+∗,∗)). In forwards ‘time’, T −∗,∗(c) is stretched along W u(M+

ε ), while
T +∗,∗(c) is stretched along W s(M+

ε ) in backwards ‘time’. By construction, the (stretched)
tubes intersect the five-dimensional hyperplane {q = 0} in two-dimensional manifolds,
Z±

T (c) (by definition).
The theorem is proved if it can be established that there are non-zero values of c for

which Z−
T (c) ∩ Z+

T (c) �= ∅, since each point in this intersection determines a point in
W u(P−

ε ) ∩ W s(P−
ε ) ∩ {q = 0}.

To show this, we extend {q = 0} to a six-dimensional space, denoted by {{q = 0}, c}, by
adding c as an independent variable. This space contains the extended manifolds {Z−

T (c), c}
and {Z+

T (c), c} as three-dimensional subsets. Since γ −∗,∗(ξ ; c) and γ +∗,∗(ξ ; c) are exponentially
close to M+

ε as they intersect {q = 0}, and since the projections Z−
slow and Z+

slow intersect by
construction near c = c j determined by (3.13), it follows that {Z−

T (c), c} and {Z+
T (c), c} are

exponentially close for c near c j . As in the proof of Theorem 2.1, it now follows from the fact
that T −∗,∗(c) is stretched along W u(M+

ε ) and T +∗,∗(c) along W s(M+
ε ), that—in the six-dimen-

sional space {{q = 0}, c}—the three-dimensional manifolds {Z−
T (c), c} and {Z+

T (c), c} must
intersect transversely in discrete points that have c-coordinates c∗

j (ε), which are to leading

order determined by (3.13) or (3.17). Hence, Z−
T (c) ∩ Z+

T (c) = γ −
tr, j (ξ) ∩ {q = 0} �= ∅ at

c∗
j (ε) = c j + O(ε). ��

4 Bifurcation from Stationary to Travelling Pulse Solutions

4.1 Leading Order Analysis

To investigate the nature of the bifurcation from stationary one-pulse solutions to travelling
one-pulse solutions, we start by considering the travelling pulse just after ‘creation’, that is,
we set

c = δ, (4.1)

with 0 < ε � δ � 1 (so c is no longer an unknown anymore). We expand the three
unknowns, τ̂ = τ̂∗,0 + O(δ), θ̂ = θ̂∗,0 + O(δ), ξ∗ = ξ∗,0 + δξ∗,1 + O(δ2). Notice that τ̂∗,0

and θ̂∗,0 determine the bifurcation values of τ̂ and θ̂ at which the bifurcation occurs, since
the speed of the bifurcating travelling pulse reduces to zero at τ̂ = τ̂∗,0 and θ̂ = θ̂∗,0. Since
the bifurcation is co-dimension one we expect to find a relation between τ̂∗,0 and θ̂∗,0.

The eigenvalues (3.8) and (3.12) become

λ±
v = ±1 − 1

2
τ̂∗,0δ + O(δ2), λ±

w = ± 1

D
− 1

2

θ̂∗,0

D2 δ + O(δ2),

s±
v = −1 ± 1

2
τ̂∗,0δ + O(δ2), s±

w = −1 ± 1

2

θ̂∗,0

D
δ + O(δ2).
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Fig. 9 For (α, β, γ, ε) = (3, 1, 2, 0.01), the bifurcation point τ̂∗,0(θ̂∗,0) is plotted for D = 2, 5, 10, 100. The
value of the jump mid-point ξ∗,0 is, respectively, 40.547, 47.018, 50.356, 54.393 and is computed through
(4.2). When D = ∞, we have ξ∗,0 = 54.931 and τ̂∗,0(θ̂∗,0) = τ̂∗,0 = 1.0460. This is the dotted line in the
figure

We also expand the four equalities in (3.11), using A0 := e−εξ∗,0 ,

v±∗ = −A2
0 ∓ τ̂∗,0δ

(
1

2
− 1

2
A2

0 + A2
0 log A0

)

+ 2εξ∗,1 A2
0δ + O(δ2),

w±∗ = −A
2
D
0 ∓ θ̂∗,0

D
δ

(
1

2
− 1

2
A

2
D
0 + 1

D
A

2
D
0 log A0

)

+ 2
ε

D
ξ∗,1 A

2
D
0 δ + O(δ2).

Next, we substitute the above expansions into the jump condition (3.13), and we recall that
c = δ, to obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ = αA2
0 + β A

2
D
0 (twice),

1
3

√
2 = ατ̂∗,0

( 1
2 − 1

2 A2
0 + A2

0 log A0
)+ β

θ̂∗,0
D

(
1
2 − 1

2 A
2
D
0 + 1

D A
2
D
0 log A0

)

,

0 = 4εξ∗,1

(

αA2
0 + β

D A
2
D
0

)

,

(4.2)

where we equated coefficients on O(1) and O(δ) terms, respectively, and added and sub-
tracted the two O(δ) equations. Note that the equation for A0 is identical to that of the
stationary one-pulse orbit (2.22): near the bifurcation the width of the travelling pulse is to
leading order equal to that of the stationary pulse. Equation 4.2 determine the three unknowns
A0 (which gives ξ∗,0), τ̂∗,0 as function of θ̂∗,0, and ξ∗,1 = 0. The solution τ̂∗,0 as function of
θ̂∗,0, is plotted in Fig. 9 for several values of D.

Remark 4.1 We briefly consider the case of D large, i.e., D = O( 1
δ
). It immediately follows

from (4.2) that ξ∗,0 = − 1
2

1
ε

log
(

γ−β
α

)
. (Here, we also have to assume that γ > β, α > 0 or

that γ < β, α < 0). Moreover,

τ̂∗,0(θ̂) = 2

3

√
2

(

α − (γ − β) + (γ − β) log

(
γ − β

α

))−1

+ O(δ).

This τ̂∗,0 is analogous to the (τ̂2)∗,0 we find in the analysis for travelling pulses of the reduced
two-component system (6.1)—see Sect. 6.
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4.2 Subcriticality and Supercriticality of the Bifurcation

To determine the nature (supercritical versus subcritical) of the bifurcation, see Fig. 11, and
also for the stability analysis [23], we actually need the correction terms up to and including
third order in δ in the above calculations. To keep the calculations within reasonable limits,
we set the bifurcation parameter θ equal to one, such that in the above analysis the w-com-
ponent is symmetric and has no higher order corrections, i.e., θ̂ = 0 in (3.8), etc. Note that θ

has also been set to θ = 1 in [17,24,25]. Moreover, most of the numerical results presented
in [2,15,18,22] are for θ = 1. We also assume that αA2

0 + β
D A2/D

0 > 0, which implies that
the stationary one-pulse limit is not near a saddle-node bifurcation and that it is stable [23].

Lemma 4.1 Let (α, β, γ, D, τ, θ, ε) be such that τ = O( 1
ε2 ), θ = 1, α > 0, (2.22) holds,

and αA2
0 + β

D A2/D
0 > 0, where A0 = e−εξ∗,0 and 0 < ε � 1. For c = δ, with ε � δ � 1, a

travelling pulse exists for τ = 1
ε2 (τ̂∗,0 + δ2τ̂∗,2 + O(δ3)), with

τ̂∗,0 = 2

3

√
2

1

α(1 − A2
0 + A2

0 log A2
0)

> 0,

τ̂∗,2 = 3

32

√
2α(τ̂∗,0)

4
[

1 − A2
0 + A2

0 log A2
0 − 1

3
A2

0 log3 A2
0

+αA4
0 log2 A2

0(log A2
0 − 1)

αA2
0 + β

D A2/D
0

]

. (4.3)

Note that the sign of τ̂∗,2 determines the nature of the bifurcation: a negative τ̂∗,2 yields a sub-
critical bifurcation, while a positive τ̂∗,2 yields a supercritical bifurcation. For given system
parameters, we can evaluate (4.3) to determine the sign of τ̂∗,2. Moreover, we observe that
it is possible for the same (α, β, D) for τ̂∗,2 to take on positive, as well as negative, values,
depending on γ (via A0), as is illustrated in Fig. 10.

Proof The proof consists of an elaborate—but straightforward—asymptotic analysis of the
jump conditions (3.13). Plugging in v±∗ , w±∗ with θ = 1 yields, to leading order in ε,

α(s±
v (e±2ελ∓

v ξ∗ − 1) − 1) − βe−2 ε
D ξ∗ + γ = ∓1

3

√
2c.

0.2 0.4 0.6 0.8 1
-0.2

0.2

0.4

0.6

0.8

1 0.2 0.4 0.6 0.8 1

-10

-8

-6

-4

-2

Fig. 10 Left frame: (α, β, D) = (3, 1, 5). Right frame: (α, β, D) = (3, −1, 5). Note that we did not plot τ̂∗,2

but a ‘scaled’ version τ̂∗,2/C . To be more precise, C = 3
32

√
2α(τ̂∗,0)4, and the scaling therefore depends on

A0. However, C > 0 for A0 ∈ (0, 1). Thus, the scaling does not change the sign of τ̂∗,2. Moreover, note that

the vertical asymptote (for β < 0) is exactly where αA2
0 + β

D A
2
D
0 = 0 (A0 = Ac , see (2.25)). The last free

parameter, γ , actually determines the value of A0 via (4.7). Thus for (α, β, D) = (3, 1, 5) it is possible to
have a negative, as well as a positive τ̂∗,2
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After expanding the two unknown variables τ̂ and ξ∗,

τ̂=τ̂∗,0+δτ̂∗,1+δ2τ̂∗,2 + δ3τ̂∗,3 + O(δ4), ξ∗ = ξ∗,0 + δξ∗,1 + δ2ξ∗,2 + δ3ξ∗,3 + O(δ4),

we obtain the leading order approximations of (3.8) and (3.12),

λ±
v = ±1 − 1

2
τ̂∗,0δ +

(

±1

8
τ̂ 2∗,0 − 1

2
τ̂∗,1

)

δ2 +
(

±1

4
τ̂∗,0τ̂∗,1 − 1

2
τ̂∗,2

)

δ3 + O(δ4),

s±
v = −1 ± 1

2
τ̂∗,0δ ± 1

2
τ̂∗,1δ

2 ∓
(

1

16
τ̂ 3∗,0 − 1

2
τ̂∗,2

)

δ3 + O(δ4). (4.4)

With these expressions we deduce

e±2ελ∓
v ξ∗ = e−2εξ∗,0+e−2εξ∗,0(∓ετ̂0ξ∗,0−2εξ∗,1)δ+e−2εξ∗,0 [−1

4
ε(τ̂∗,0)

2ξ∗,0 ∓ ετ̂∗,1ξ∗,0

∓ετ̂∗,0ξ∗,1 ± 2ε2τ̂∗,0ξ∗,0ξ∗,1 + 1

2
ε2(τ̂∗,0)

2(ξ∗,0)
2 + 2ε2(ξ∗,1)

2 − 2εξ∗,2]δ2

+e−2εξ∗,0

[

−1

2
ετ̂∗,0τ̂∗,1ξ∗,0 ∓ ετ̂2ξ∗,0 ± 1

4
ε2(τ̂∗,0)

3(ξ∗,0)
2+ε2τ̂∗,0τ̂∗,1(ξ∗,0)

2

∓1

6
ε3(τ̂∗,0)

3(ξ∗,0)
3 − 1

4
ε(τ̂∗,0)

2ξ∗,1 ∓ ετ̂∗,1ξ∗,1 + 3

2
ε2(τ̂∗,0)

2ξ∗,0ξ∗,1

±2ε2τ̂∗,1ξ∗,0ξ∗,1 − ε3(τ̂∗,0)
2(ξ∗,0)

2ξ∗,1 ± 2ε2τ̂∗,0(ξ∗,1)
2 ∓ 2ε3τ̂∗,0ξ∗,0(ξ∗,1)

2

−4

3
ε3(ξ∗,1)

3 ∓ ετ̂∗,0ξ∗,2 ± 2ε2τ̂∗,0ξ∗,0ξ∗,2+4ε2ξ∗,1ξ∗,2−2εξ∗,3

]

δ3+O(δ4),

(4.5)

and

e−2 ε
D ξ∗ = e−2 ε

D ξ∗,0 − 2

D
εξ∗,1e−2 ε

D ξ∗,0δ + e−2 ε
D ξ∗,0

[
2

D2 ε2(ξ∗,1)
2 − 2

D
εξ∗,2

]

δ2

+e−2 ε
D ξ∗,0

[

− 4

3D3 ε3(ξ∗,1)
3 + 4

D2 ε2ξ∗,1ξ∗,2 − 2

D
εξ∗,3

]

δ3 + O(δ4). (4.6)

(Recall that εξ∗, j = O(1).)
Combining (4.4), (4.5), and (4.6), we find to leading order (twice)

αA2
0 + β A

2
D
0 = γ, (4.7)

which agrees with the first equation in (4.2).
The O(δ) corrections read

±1

2
ατ̂∗,0(1 − A2

0 + A2
0 log A2

0) + 2εξ∗,1(αA2
0 + β

D
A

2
D
0 ) = ±1

3

√
2.

By adding and subtracting the above two equations, we obtain

ξ∗,1 = 0, τ̂∗,0 = 2

3

√
2

1

α(1 − A2
0 + A2

0 log A2
0)

,

which agrees with (4.2), since θ̂∗,0 = 0. Note that the function 1− A2
0 + A2

0 log A2
0 is positive

for all A0 ∈ (0, 1) – it decreases monotonically from one to zero as A0 increases from zero
to one. Since α > 0 it follows that τ̂∗,0 > 0.
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At O(δ2), we find

0 = ±1

2
ατ̂∗,1(A2

0 − 1) − αA2
0

[

−1

4
ε(τ̂∗,0)

2ξ∗,0 ∓ ετ̂1ξ∗,0 + 1

2
ε2(τ̂∗,0)

2(ξ∗,0)
2 − 2εξ∗,2

]

−1

2
εα(τ̂∗,0)

2ξ∗,0 A2
0 + 2

β

D
εξ∗,2 A

2
D
0 ,

(since ξ∗,1 = 0). Subtracting the two equalities implies

ατ̂∗,1(1 − A2
0 + A2

0 log A2
0) = 0 ⇒ τ̂∗,1 = 0.

Adding both terms yields

ξ∗,2 = 1

16

1

ε

αA2
0(τ̂∗,0)

2 log A2
0(log A2

0 − 1)

αA2
0 + β

D A2/D
0

.

We note that log A2
0 − 1 < log A2

0 < 0 and αA2
0 + β

D A2/D
0 > 0, therefore, sgn(ξ∗,2) =

sgn(α) = +1. Thus, the width of the pulse (2ξ∗) is larger than the leading order width
(2ξ∗,0), i.e., the width of the travelling pulse is larger than the width of the standing pulse.

The O(δ3)-term is given by

0 = ±α

(
1

16
(τ̂∗,0)

3 − 1

2
τ̂∗,2

)

(A2
0 − 1) ∓ 1

2
ατ̂∗,0 A2

0

[

− 1

4
ε(τ̂∗,0)

2ξ∗,0

+1

2
ε2(τ̂∗,0)

2(ξ∗,0)
2 − 2εξ∗,2

]

∓αA2
0[ετ̂∗,2ξ∗,0 − 1

4
ε2(τ̂∗,0)

3(ξ∗,0)
2 + 1

6
ε3(τ̂∗,0)

3(ξ∗,0)
3

+ετ̂∗,0ξ∗,2 − 2ε2τ̂∗,0ξ∗,0ξ∗,2 ∓ 2εξ∗,3]

+2
β

D
εξ∗,3 A

2
D
0 .

Adding both terms implies ξ∗,3 = 0, subtracting yields,

α

(
1

16
(τ̂∗,0)

3 − 1

2
τ̂∗,2

)

(A2
0 − 1) − 1

2
ατ̂∗,0 A2

0

[

− 1

4
ε(τ̂∗,0)

2ξ∗,0 + 1

2
ε2(τ̂∗,0)

2(ξ∗,0)
2

−2εξ∗,2

]

− αA2
0

[

ετ̂∗,2ξ∗,0 − 1

4
ε2(τ̂∗,0)

3(ξ∗,0)
2 + 1

6
ε3(τ̂∗,0)

3(ξ∗,0)
3 + ετ̂∗,0ξ∗,2

−2ε2τ̂∗,0ξ∗,0ξ∗,2

]

= 0,

which can be rewritten as

0 = −αA2
0τ̂∗,0εξ∗,2 log A2

0 + 1

48
αA2

0(τ̂∗,0)
3 log3 A2

0 − 1

16
α(τ̂∗,0)

3(1 − A2
0 + A2

0 log A2
0)

+1

2
ατ̂∗,2(1 − A2

0 + A2
0 log A2

0).
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Then, using the expression for τ̂∗,0 and ξ∗,2, we obtain

τ̂∗,2 = 1

8
(τ̂∗,0)

3 − 1

32

√
2αA2

0(τ̂∗,0)
4 log3 A2

0 + 3

32

√
2
α2 A4

0(τ̂∗,0)
4 log2 A2

0(log A2
0 − 1)

αA2
0 + β

D A2/D
0

,

(4.8)

which can be rewritten as in (4.3). ��

For D large, we can analytically determine the sign of τ̂∗,2 in (4.3), as we now show.

Corollary 4.2 Let (α, β, γ, D, τ, θ, ε) and A0 be as in Lemma 4.1 and assume that D = 1
δ

with 0 < ε � δ � 1. Define AZ
0 ∈ (0, 1) as the (unique) solution of

1 − A2
0 + A2

0 log A2
0 + 2

3
A2

0 log3 A2
0 − A2

0 log2 A2
0 = 0, (4.9)

(AZ
0 = 0.11063 . . .). Then, τ̂∗,2 > 0 for parameter combinations such that 0 < A0 <

AZ
0 + O(δ) and τ̂∗,2 < 0 for 1 > A0 > AZ

0 + O(δ).

Proof It follows from (4.3) that, to leading order in δ,

τ̂∗,2|D=O(δ−1) = 3

32

√
2α(τ̂∗,0)

4
[

1 − A2
0 + A2

0 log A2
0

−1

3
A2

0 log3 A2
0 + A2

0 log2 A2
0(log A2

0 − 1)

]

= 3

32

√
2α(τ̂∗,0)

4
[

1 − A2
0 + A2

0 log A2
0 + 2

3
A2

0 log3 A2
0

−A2
0 log2 A2

0

]

=: C τ̂
′
∗,2,

with C = 3
32

√
2α(τ̂∗,0)

4 > 0 and τ̂
′
∗,2 = 1 − A2

0 + A2
0 log A2

0 + 2
3 A2

0 log3 A2
0 − A2

0 log2 A2
0.

Thus sgn(τ̂∗,2) = sgn(τ̂
′
∗,2). We notice that τ̂

′
∗,2(0) = 1 and τ̂

′
∗,2(1) = 0. We now show that

τ̂
′
∗,2(s), with s := A2

0, has a negative minimum by differentiating,

d

ds
τ̂

′
∗,2 = (log s)

(
2

3
log2 s + log s − 1

)

.

Thus, with z := log s (so that z ∈ (−∞, 0)), we see that τ̂
′
∗,2(z) has a unique extremum if

2
3 z2 + z − 1 = 0, i.e., z = zM = − 3

4 − 1
4

√
33. This implies that AM

0 = e− 1
8 (3+√

33) ∈ (0, 1),
so that

τ̂
′
∗,2(AM

0 ) = 1 − e− 1
4 (3+√

33)

(
31

4
+ 5

4

√
33

)

< 0.

Hence, AM
0 determines a negative minimum of τ̂

′
∗,2, which implies τ̂

′
∗,2 must change sign

once for A = AZ
0 ∈ (0, AM

0 ), where AZ
0 is determined by (4.9). ��

An additional consequence of Lemma 4.1, that holds for more general values of D, is

Corollary 4.3 Let (α, β, γ, D, τ, θ, ε) and A0 be as in Lemma 4.1. Furthermore, assume
that β < 0, αD > −β, A0 > Ac > AZ

0 (with Ac, AZ
0 as in (2.25), (4.9), respectively), then

the bifurcation is subcritical, i.e., τ̂∗,2 < 0.
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Fig. 11 The solution curve of equation (3.13) in the (τ̂ , c) plane for the parameter values (α, β, γ, D, θ, ε) =
(5, −3, 1, 4, 1, 0.01). We have chosen the parameters in such a fashion that they satisfy the conditions in
Remark 4.2. In the left frame we observe a subcritical bifurcation at τ̂ = τ̂∗,0 = 6.01363. Moreover, we
observe that as τ̂ goes to infinity the upperbranch, c+(τ̂ ), goes to the theoretically predicted, leading order
value, 3

2

√
2(α − γ ) = 6

√
2, see (3.15). Finally, from this numerical continuation we observe that the two

branches merge at a saddle-node bifurcation at τ̂num
SN = 0.84917 and cnum

SN = 6.3027. In the right frame, the
region near τ̂ = τ̂∗,0 is magnified

Proof Observe that in this case

αA4
0 log2 A2

0(log A2
0 − 1)

αA2
0 + β

D A2/D
0

< A2
0 log2 A2

0(log A2
0 − 1) < 0.

Therefore, τ̂∗,2(A0) < C τ̂
′
∗,2(A0), with τ̂

′
∗,2(A0) as defined above, and C τ̂

′
∗,2(A0) is negative

for A0 > AZ
0 . ��

Remark 4.2 If, in addition to the conditions in Corollary 4.3, it is also assumed that α > γ ,
then it follows from our analysis in Sect. 3.2 that there is a travelling pulse with speed
c = 3

2

√
2(α − γ )+O(δ, ε) > 0 for τ̂ � 1 (3.15). This indicates that the curve c = c(τ̂ ) has

a fold structure, i.e., for increasing τ̂ (and all other parameters fixed) there is a saddle-node
bifurcation of travelling pulses at τ̂ = τ̂SN < τ̂∗,0 at which two travelling pulses bifurcate
with speeds c±(τ̂ ) > 0 and c±(τ̂SN ) = cSN > 0; the pulse associated to c−(τ̂ ) merges
with the stationary pulse at τ̂ = τ̂∗,0, while the other pulse exists for all τ̂ > τ̂SN , so that
c+(τ̂ ) → 3

2

√
2(α − γ ) as τ̂ → ∞. This can be checked by using a continuation method for

the solutions of (3.13), see Fig. 11. Hence, there exist parameter combinations for which two
types of travelling pulses coexist with the stationary pulse (for τ̂SN < τ̂ < τ̂∗,0). Both the
stationary pulse and the travelling pulse associated to c+(τ̂ ) may be stable [23].

5 Stationary Two-Pulse Solutions

In this section, we establish the existence of localized, symmetric, standing, two-pulse solu-
tions of (1.6). We construct these pulses as homoclinic orbits γ −

2p, j (ξ) to the critical point P−
ε .

5.1 The Construction of γ −
2p, j (ξ) Homoclinic to P−

ε

We search for stationary pulse-like solutions. Therefore, the PDE (1.7) again reduces to (2.1),
and the basic observations (on the fixed points, the reduced limits, the slow manifolds, etc.)
are the same as in Sect. 2.1. However, for symmetric standing two-pulse solutions, we have
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to distinguish nine different regions instead of the five regions as we did for the one-pulse
solutions—see Sect. 2.2. We again parametrize the two-pulse solutions so that its u, v, w-
components are at a local extremum at ξ = 0. However, there are three local extrema, see
Fig. 1, and for symmetry considerations we choose to put the zero of the ξ -axis at the second
location, the one exponentially close to M−

ε . It turns out that v−
2p, j (0) and w−

2p, j (0) are local

minima, while u−
2p, j (0) is a local maximum, see Figs. 1 and 12. We define the four ‘jump

mid-points’ of γ −
2p, j by ±ξ

1,2∗ (not to be confused with the ξ∗,1, ξ∗,2 of the previous sec-

tion). Where the last ‘back’ (i.e., the final jump of M+
ε back to M−

ε ) of γ −
2p, j (ξ) crosses the

{u = 0}-hyperplane at ξ = ξ1∗ , and the last front of γ −
2p, j (ξ) crosses the same hyperplane at

ξ = ξ2∗ . Note that by construction 0 < ξ2∗ < ξ1∗ . The reversibility symmetry implies that −ξ1∗
is the jump mid-point of the first front and −ξ2∗ is the jump mid-point of the first back. Thus,

γ −
2p, j (±ξ1∗ ) = (0,∓p1∗, v1∗,∓q1∗ , w1∗,∓r1∗ ), γ −

2p, j (±ξ2∗ ) = (0,±p2∗, v2∗,±q2∗ , w2∗,±r2∗ ).

(5.1)

We assume that ξ1∗ , ξ2∗ , as well as ξ1∗ − ξ2∗ , are large, i.e., ξ1,2∗ and ξ1∗ − ξ2∗ are O( 1
ε
). We now

define the four fast intervals I 2,4,6,8
f and the five slow intervals I 1,3,5,7,9

s

I 2,4
f : =

(

−ξ1,2∗ − 1√
ε
,−ξ1,2∗ + 1√

ε

)

, I 6,8
f :=

(

ξ2,1∗ − 1√
ε
, ξ2,1∗ + 1√

ε

)

,

I 1
s : =

(

−∞,−ξ1∗ − 1√
ε

]

, I 3,7
s :=

[

∓ξ1,2∗ + 1√
ε
,∓ξ2,1∗ − 1√

ε

]

,

I 5
s : =

[

−ξ2∗ + 1√
ε
, ξ2∗ − 1√

ε

]

, I 9
s :=

[

ξ1∗ + 1√
ε
,∞

)

.

The nine different regions are then

1. The dynamics take place exponentially close to the slow manifold M−
ε : ξ ∈ I 1

s .
2. The dynamics take place in the fast field: ξ ∈ I 2

f .

3. The dynamics take place exponentially close to M+
ε : ξ ∈ I 3

s .
4. The dynamics take place in the fast field: ξ ∈ I 4

f .

5. The dynamics take place exponentially close to M−
ε : ξ ∈ I 5

s .
6. The dynamics take place in the fast field: ξ ∈ I 6

f .

7. The dynamics take place exponentially close to M+
ε : ξ ∈ I 7

s .
8. The dynamics take place in the fast field: ξ ∈ I 8

f .

9. The dynamics take place exponentially close to M−
ε : ξ ∈ I 9

s .

The analysis of the formal construction is now nearly the same as for the standing one-pulse
case (Sect. 2.2); the only difference is that it involves a bit more bookkeeping. However,
qualitatively, nothing changes; for example we still have 


2,4,6,8
f (v,w, q, r) = O(

√
ε), the

equivalent of (2.15). The homoclinic v,w-component on the slow manifolds are still gov-
erned by (2.10) and (2.11). Together with the usual boundary conditions, of which there are
in total forty, we get
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v2p(ξ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2eεξ
(
sinh

(
εξ1∗

)− sinh
(
εξ2∗

))− 1 in 1

−e−ε(ξ+ξ1∗ ) − eε(ξ−ξ1∗ ) − 2eεξ (sinh (εξ2∗ )) + 1 in 3

−e−ε(ξ+ξ1∗ ) + e−ε(ξ+ξ2∗ ) + eε(ξ−ξ2∗ ) − eε(ξ−ξ1∗ ) − 1 in 5

−e−ε(ξ+ξ1∗ ) − eε(ξ−ξ1∗ ) − 2e−εξ (sinh (εξ2∗ )) + 1 in 7
2e−εξ

(
sinh (εξ1∗ ) − sinh (εξ2∗ )

)− 1 in 9,

(5.2)

and likewise

w2p(ξ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2e
ε
D ξ
(
sinh

(
ε
D ξ1∗

)− sinh
(

ε
D ξ2∗

))− 1 in 1

−e− ε
D (ξ+ξ1∗ ) − e

ε
D (ξ−ξ1∗ ) − 2e

ε
D ξ (sinh ( ε

D ξ2∗ )) + 1 in 3

−e− ε
D (ξ+ξ1∗ ) + e− ε

D (ξ+ξ2∗ ) + e
ε
D (ξ−ξ2∗ ) − e

ε
D (ξ−ξ1∗ ) − 1 in 5

−e− ε
D (ξ+ξ1∗ ) − e

ε
D (ξ−ξ1∗ ) − 2e− ε

D ξ (sinh ( ε
D ξ2∗ )) + 1 in 7

2e− ε
D ξ
(
sinh ( ε

D ξ1∗ ) − sinh ( ε
D ξ2∗ )

)− 1 in 9.

(5.3)

By the reversibility symmetry (2.2), there are two Melnikov conditions (instead of the
expected four), which are analogous to (2.17),

αv1,2∗ + βw1,2∗ + γ = 0, (5.4)

with v
1,2∗ and w

1,2∗ defined in (5.1). When we define A1 := e−εξ1∗ and A2 := e−εξ2∗
(0 < A1 < A2 < 1), and combine this with the above results (5.2), (5.3), and (5.4), we obtain

⎧
⎨

⎩

−αA2
1 + αA1 A2 − αA1 A−1

2 − β A
2
D
1 + β A

1
D
1 A

1
D
2 − β A

1
D
1 A

− 1
D

2 + γ = 0

+αA2
2 − αA1 A2 − αA1 A−1

2 + β A
2
D
2 − β A

1
D
1 A

1
D
2 − β A

1
D
1 A

− 1
D

2 + γ = 0.

(5.5)

By adding and subtracting, this system can be transformed into
⎧
⎨

⎩

G1(A1, A2) := α(A1 − A2)
2 + β(A

1
D
1 − A

1
D
2 )2 = 0

G2(A1, A2) := α(A2
2 − A2

1) − 2αA1 A−1
2 + β(A

2
D
2 − A

2
D
1 )2 − β A

1
D
1 A

− 1
D

2 = −2γ.

(5.6)

The above formal analysis gives rise to the following theorem.

Theorem 5.1 Let (α, β, γ, D, τ, θ, ε) be such that (5.6) has K solution pairs (A1, A2) with
0 < A1 < A2 < 1. Let ε > 0 be small enough. If K = 0, then there are no homoclinic
orbits to P−

ε in (2.1) that have a structure as sketched in Fig. 12. If K > 0, there are K
homoclinic orbits γ −

2p, j (ξ), j ∈ {1, . . . , K }, to P−
ε in (2.1) (with structure as in Fig. 12).

These correspond to symmetric standing two-pulse solutions of (1.6).

Given the form of Eq. 5.6, it is natural to solve A1 and γ as functions of A2 and the system
parameters α, β and D. In Fig. 13, both A1 and γ are plotted. Note also that G1(A1, A2) can-
not vanish in (5.6) if sgn(α) = sgn(β). Thus, there only exist homoclinic 2-pulse solutions
if sgn(α) �= sgn(β)—see Sect. 6.

Proof of Theorem 5.1 A symmetric standing two-pulse γ −
2p, j (ξ) is reversible (2.2) and we can

therefore argue along the same lines as in the proof of Theorem 2.1. In fact, the proof of this
theorem goes in essence very similar to that of Theorem 2.1. Therefore, we will omit most
details. By the first Melnikov condition in (5.4), there exists a one-parameter family of orbits
γ

1,−
het (ξ ; v1∗;w1∗(v1∗)) ∈ W u(P−

ε )∩ W s(M+
ε ). We define the tube T −

1,∗ ⊂ W u(P−
ε ) as the col-

lection of orbits in W u(P−
ε ) that are exponentially close to γ

1,−
het (ξ ; v1∗;w1∗(v1∗)) for ξ < −ξ1∗ .
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Fig. 12 A schematic sketch of a symmetric two-pulse γ −
2p, j (ξ) homoclinic to P−

ε

Fig. 13 In the left frame, A1 is plotted as function of A2 for several values of D. In the right frame, γ is
plotted as function of A2 for the same values for D. The dashed curve represents the asymptotic behavior
for D large and is given by (5.12). The two-pulse orbits are typically created or annihilated in a saddle-node
bifurcation—see Sect. 7, Fig. 15

All orbits in T −
1,∗ approach M+

ε and follow the slow flow on M+
ε for some ‘time’ (which may

be infinite), after which they take off parallel (and exponentially close to) W u(M+
ε ). In other

words, near M+
ε T −

1,∗ is strongly stretched along the direction of W u(M+
ε ). It thus follows

by the application of the second Melnikov condition in (5.4) that T −
1,∗ intersects W s(M−

ε );

the intersection T −
1,∗ ∩W s(M−

ε ) is again two-dimensional, i.e., it consists of a one-parameter
family of orbits ⊂ W u(P−

ε )∩W s(M−
ε ). As in the proof of Theorem 2.1, it can now be shown

that there is a unique orbit γ
2,−
0,∗ (ξ) ⊂ T −

1,∗ ∩ W s(M−
ε ) that is homoclinic to M−

ε such that

γ
2,−
0,∗ (0) ∈ {q = r = 0} – note that this also determines the position of the symmetry point

ξ = 0. Again, the algebra leading to the construction of γ
2,−
0,∗ (ξ) is equivalent to the above

analysis and yields at leading order (5.6). The existence of the 2-pulse homoclinic orbits
γ −

2p, j (ξ) now follows by arguments that are identical to those in Theorem 2.1. It is based

on the construction of the sub-tube T −
2,∗ ⊂ T −

1,∗ around γ
2,−
0,∗ (ξ), its symmetrical counterpart

T +
2,∗ around the orbit γ

2,+
0,∗ (ξ) and the application of the reversibility symmetry. ��

Remark 5.1 In the proof presented above we have used that the jump mid-points v
1,2∗ and

w
1,2∗ satisfy certain constraints. In particular, v1∗ ∈ (−1, 0), w1∗ = − 1

β
(αv1∗+γ ), v2∗ ∈ (v1∗, V )

and w2∗ = − 1
β
(αv2∗ + γ ), where V = − ξ1∗ +ξ2∗

2 − 1
2ε

log
(

1 − e−2εξ2∗ + e−ε(ξ1∗ +ξ2∗ )
)

. These

123



106 J Dyn Diff Equat (2009) 21:73–115

constraints arise naturally from the requirement that the tracked orbits lie on the correct side of
the stable and unstable manifolds of the slow manifold, so that they can have a second pulse.

Remark 5.2 In our analysis we have focused on the existence of localized one- and two-
pulse patterns. As for instance in [4], the same geometrical approach as in the proofs of
Theorems 2.1, 3.1 and 5.1 can be applied to establish the existence of many other kinds of
stationary or travelling patterns, such as N -pulse solutions and various kinds of spatially
periodic wave trains. We refrain from going into the details here. However, we do notice
that these patterns can be stable and do play an important role in the dynamics of (1.7) – see
section 7.1 and especially Fig. 15.

5.2 The Existence of Two-Pulse Solutions

Just as was the case for the K of Theorem 2.1, it is, a priori, not clear whether there exist
parameter combinations for which the K of Theorem 5.1 is non-zero. To show that these
parameter regimes do exist we first choose an explicit D as an example, that is, we put
D = 2. Naturally, we also have to assume sgn(α) �= sgn(β). With this special choice of D
we analyze (5.6). It transforms into

{
H1(A1, A2) := α(A1 − A2)

2 + β(
√

A1 − √
A2)

2 = 0

H2(A1, A2) := α(A2
2 − A2

1) − 2α A1
A2

+ β(A2 − A1) − 2β

√
A1
A2

= −2γ.
(5.7)

Observe that the equality H1(A1, A2) = 0 does not depend on γ . Moreover, γ only appears
in the right hand side of H2(A1, A2) = −2γ . That is, γ only shifts H2(A1, A2) up or down.
So, instead of solving for A1 and A2 in terms of the unknown parameters α, β and γ , it is
much easier to fix α, β and A2 and to determine A1 and γ such that (5.7) is solved. Actually,
by doing so, we impose, alongside α and β, one of the jump mid-points ξ2∗ and try to locate the
second jump mid-point ξ1∗ and γ such that (1.7) possesses a standing two-pulse. Of course,
we could also choose to start with α, β, and A1 and determine A2 and γ that satisfy (5.7).

The zero of H1(A1, A2), for which 0 < A1 < A2, is given by the relation
√

A1 +√
A2 = √−β/α. (5.8)

When we implement this into formula (5.7) for H2(A1, A2) we find, after some manipulation,
a unique γ :

γ = α − 2α(1 + A2
2)

√

− β

αA2
− β

(

1 + 3A2 + 1

A2
−
√

− A2β

α
−
√

− β

αA2

)

. (5.9)

However, there are also restrictions on the choice of A2. We need 0 < A1 < A2 < 1.
Therefore,

− 1

4

β

α
< A2 < min

{

−β

α
, 1

}

. (5.10)

We conclude that if A2 satisfies (5.10), there is a (α, β, γ )-parameter combination such that
(5.7) is satisfied, i.e., such that a two-pulse solution exists. However, if (5.10) cannot be
satisfied – which is the case when |4α| < |β|, there are no such two-pulse solutions.

This nonexistence result can be generalized to all D > 1:

Corollary 5.1 Let sgn(α) �= sgn(β). There is an open region in (α, β, γ, D)-space for which
homoclinic two-pulse solutions as described in Theorem 5.1 exist. However, if |α|D2 < |β|,
then there are no such two-pulse solutions.
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Proof We start again by observing that G1(A1, A2) = 0 does not depend on γ , and that the
γ in G2(A1, A2) = −2γ only shifts G2(A1, A2) up or down. So, again instead of solving
A1 and A2 in terms of α, β and γ via (5.6), we solve this equation for given α, β and A2

with the unknown parameters A1 and γ .
The condition 0 < A1 < A2 < 1 yields the following generalization of (5.10)

(

− β

αD2

) 1
2

D
D−1

< A2 < min

{(

−β

α

) 1
2

D
D−1

, 1

}

. (5.11)

Here, the latter inequality ensures A2 ∈ (0, 1), and the former implies A1 < A2. This interval
is empty when |α|D2 < |β|. ��
5.3 Asymptotics for D → ∞

In this section, we analyze the large D asymptotics of solutions of equation (5.6). From
Fig. 13, we observe that, over a large portion of the interval A2 ∈ (0, 1), the solution curves
for A1 lie near the axis, and the solution curves for γ lie near the lower dashed curve. More-
over, these curves approach their respective asymptotes as D increases. We establish this
result precisely in the following lemma:

Lemma 5.2 Assume that α > 0 > γ > β. Then, for strictly O(1) values of A2 ∈
(0,

√−β/α), as measured with respect to the asymptotically small parameter 1/D, the
solutions A1 = A1(α, β, A2, D) and γ = γ (α, β, A2, D) of Eq. 5.6 satisfy, to leading order,

A1 =
(

1 −
√

−α

β
A2

)D

, γ = −α

(√

−β

α
− A2

)2

as D → ∞. (5.12)

The lower dashed curve in the right frame of Fig. 13 is this parabola of γ as function of A2.
It is also useful to combine the results of (5.12) of this lemma into expressions for A1 and
A2 in terms of the given system parameters. The result is, to leading order,

A1 =
(

γ

β

) D
2

, A2 =
√

−β

α
−
√

−γ

α
.

We also remark that in both frames there is a boundary layer at A2 = A1, which is why we
require A2 to be strictly of O(1) for this result and we recall that the existence construction
requires that A1 < A2. In the boundary layer, the graph of A1 limits on the diagonal, with
a slope of −1, while the graph of γ is nearly vertical. Although the asymptotic analysis is
not too involved, we refrain from going into the details here. Nevertheless, we notice that,
by (5.6), γ = α + β in the limit A2 ↓ A1, see Fig. 13.

Proof of Lemma 5.2 We observe that, for A2 strictly of O(1) in (0,1), we may assume that

A1 = C D, (5.13)

to leading order, for some C ∈ (0, 1). Indeed, if one instead assumed that A1 = aδσ to
leading order, for δ = 1/D and for some σ > 0, then from the first equation in (5.6) one
would find that A2 = 0 to leading order, which is a contradiction. Hence, with the assumption
(5.13), the first equation in (5.6) becomes

αA2
2 + β(C − 1)2 = 0,
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to leading order, where we used that A1/D
2 = 1 + O(1/D) for A2 ∈ (0, 1), and that

(1/D) log(A2) � C . Solving, one finds, to leading order,

A1 =
(

1 −
√

−α

β
A2

)D

, (5.14)

which is precisely the first formula of (5.12).
With the asymptotics for A1 in hand, one may use the second formula in (5.6) to find the

asymptotics for γ . To leading order,

γ = −1

2

[

αA2
2 + β

(

1 −
(

1 −
√

−α

β
A2

)2
)

− 2β

(

1 −
√

−α

β
A2

)]

.

Simplifying the right member, we find precisely the asymptotic result (5.12) for γ . ��
To conclude this section on the large D asymptotics, we comment briefly on the form of

the W profile for stationary two-pulse solutions in the interval between the two pulses. From
the above asymptotics, we find, to leading order,

εξ = O(1), εξ2∗ = − log A2 = O(1), εξ1∗ = −D log

(

1 −
√

−α

β
A2

)

= O(D).

(5.15)

Hence, from (5.3), we find in region 5, to leading order,

w2p(ξ) = −e− ε
D (ξ+ξ1∗ ) + e− ε

D (ξ+ξ2∗ ) + e
ε
D (ξ−ξ2∗ ) − e

ε
D (ξ−ξ1∗ ) − 1

= 2
√

−α

β
A2 − 1

= 1 − 2
√

γ

β
. (5.16)

Therefore, for each A2 ∈ (0,
√−β/α), the W -component is constant to leading order, where

the constant is given by (5.16). Moreover, we observe that W takes on all of the values in the
interval (−1, 1), since the above analysis applies for all A2 ∈ (0,

√−β/α).
A stability analysis similar to that presented in [23] shows that the two-pulse solutions are

stable for parameter combinations in the ‘boundary layer’. However, they are unstable for
parameter values near the dashed curve in the asymptotic regime studied in Lemma 5.2.

6 The Two-Component Model

In this section, we investigate the two-component (U, V )-subsystem of the three-component
model, that is, we send D to infinity and assume that the W -component is constant at W = −1
everywhere in the PDE (1.6). The PDE model reduces to

{
Ut = ε2Uxx + U − U 3 − ε(α2V + γ2)

τ2Vt = Vxx + U − V,
(6.1)

with the same assumptions as before, 0 < ε � 1, 0 < τ2 � 1/ε3 and α2, γ2 ∈ R. Note that
the notation for the parameters has the following correspondence with the parameters of the
three-component model: α2 = α, τ2 = τ and γ2 = γ − β.
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It can be shown with the same techniques used in this article that for τ2 = O(1) the two-
component system has standing one-pulse solutions homoclinic to P−

2,ε = (u−
2,ε, 0, u−

2,ε, 0)

with u−
2,ε = −1 + 1

2ε(α2 − γ2) + O(ε2) if there exists an A ∈ (0, 1) satisfying

α2 A2 = γ2 + O(
√

ε),

recall (2.22). Hence, we immediately observe that necessary conditions for a standing pulse
homoclinic to P−

2,ε to exist are that sgn(α2) = sgn(γ2) and 0 < |γ2| < |α2|. Also,

the existence of travelling pulse solutions to P−
2,ε for large τ2 can be proved, and in the

end it boils down to solving a system of equations which is a simplification of (3.13).
Moreover, when we increase τ2 from an O(1)-parameter to an O(ε−2)-parameter a trav-
elling pulse solution bifurcates from a standing pulse solution at (τ2)0,∗ = 1

ε2 (τ̂2)0,∗ =
1
ε2

2
3

√
2
(
α2 − γ2 + γ2 log

(
γ2
α2

))
. This bifurcation can be supercritical, as well as subcriti-

cal. See also Sect. 4 and especially the proof of Lemma 4.2.
Finally, the two-component system possesses no symmetric standing two-pulse solutions

to P−
2,ε. Physically, this can be explained by the fact that the model has too few free constants

(too few dimensions). The absence of two-pulse solutions is also plausible when we look at
Theorem 5.1. There only exists a standing two-pulse solution if at least sgn(α) �= sgn(β)

and for the two-component system this condition cannot be fulfilled because there is no
equivalent parameter for β in the two-component system.

To summarize, we have shown that the two-component model also possesses stationary
and travelling pulse solutions. However, it does not support two-pulse solutions.

Remark 6.1 There are two ways in which the three-component system (1.6) may limit on a
two-component system, either by considering W → V , associated to D ↓ 1, or by W → W0,
a constant when D → ∞. In the former case one has to make the additional assumption
that τ = θ . Since in most studies of systems like (1.1)/(1.6) D � 1 and τ � θ , we do not
consider this limit here.

If one considers the limit D → ∞ in Theorems 2.1 and 3.1 for one-pulse solutions, then it
immediately follows that W → −1 uniformly on R – see for instance (2.21). However, since
the two-component limit cannot have standing two-pulse solutions, taking the limit D → ∞
in Theorem 5.1 is less straightforward. In fact, this limit has already been discussed in section
5.3 (under the assumption that A2 = O(1)). It follows from (5.15) that the width of the pulses
in the two-pulse solution increases linearly with D, while the distance between the pulses
approaches a finite limit. Thus, on bounded intervals, the two-pulse solution of the three-com-
ponent system limits on a one-pulse solution of a two-component (U, V )-system that is ho-
moclinic to (U, V ) = (+1,+1) (with W → 1−2

√
γ /β, the constant value given in (5.16)).

7 Simulations, Conclusions and Discussion

7.1 Simulations

In this section, we show the results of some numerical simulations to further illustrate the
theory presented in this article and also to illustrate some of the basic pulse interactions and
instabilities. These simulations are carried out using the numerical software presented in [1].

We already illustrated a stationary one-pulse solution in the left frame of Fig. 1. There-
fore, we begin here with some travelling pulses of the type constructed in Sect. 3. The
pulses shown in Fig. 14 exist for values of τ greater than the theoretically predicted value
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Fig. 14 Stable travelling pulses. The parameter values are (α, β, γ, D, θ, ε) = (6, 3, 4, 2, 1, 0.1), and τ is the
bifurcation parameter. Here, we plotted a bouncing travelling pulse solution for τ = 110 and an annihilation
of a travelling pulse for τ = 115

τ̂∗,0 = 0.59 for the bifurcation in which travelling pulses are created (which translates into
an unscaled τ∗,0 = 59). In the left frame, the travelling pulse collides with its mirror image
pulse at the boundary, since the boundary conditions are of homogeneous Neumann type,
and afterwards they repel each other. By contrast, in the right frame, the pulse and its mirror
image collide and then annihilate. The changeover from repulsion to annihilation after the
collision occurs at τ num

ann = 112. Finally, we observe that the numerically observed value of
the bifurcation to travelling waves is τ num∗ = 103, which is within the relative error of mag-
nitude O(1/ε) = O(10) of the leading order theoretical value τ∗,0 = 59. Of course, in these
simulations ε is not yet really small, and hence we checked that the value of τ num∗ decreases
toward the value predicted by the leading order theory as ε is decreased. For example, for
ε = 0.01, we find τ num∗ = 5.95 × 103 (compared to 5.9 × 103 theoretically).

Next, we illustrate the theoretical results for stationary two-pulse solutions of (1.6), as
derived in Sect. 5. For each of the four values of γ = 0.8, 0.75,−0.25,−0.3, Fig. 15 shows
the corresponding stationary solution. Based on the simulations for these parameter values, we
find that the homogeneous background state U = −1 undergoes a subcritical bifurcation into
a two-pulse solution at γ num = 0.78. Likewise, due to the reversibility symmetry, the homo-
geneous state U = +1 bifurcates supercritically into a two-pulse solution at γ num = −0.78,
though we do not show this. In addition, we observe that, as we decrease γ from 0.78, the
width of the pulses increases, until there is a bifurcation at γ num = −0.27 at which the pulses
coalesce, and the solution is U = +1 everywhere, except inside an interior layer and inside
the layers at the boundaries of the computational interval. This solution is a spatially periodic
solution. Moreover, the observed value for this coalescence of the pulses agrees well with the
theoretically predicted value of γ = −0.31 for the saddle-node bifurcation, which occurs at
the minimum in the curve shown in the right frame of Fig. 13.

One of the most commonly-encountered bifurcations that the pulse solutions undergo is a
supercritical Hopf bifurcation in which the widths, and heights, of the pulses oscillate peri-
odically in time. In Fig. 16, we show a breathing one-pulse in the left frame, and a breathing
two-pulse in the right frame. For the one-pulse solution (with ε = 0.1), the Hopf bifurca-
tion occurs at τ num

H = 47. Moreover, we find that the breather dies out for τ = 49.8. For
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Fig. 15 Plots of the stationary solutions of the three-component model (1.6) for four values of γ : γ =
0.8, 0.75,−0.25,−0.3. The values of the other parameters are (α, β, D, τ, θ, ε) = (2, −1, 5, 1, 1, 0.01)

the two-pulse solution (with ε = 0.01), the Hopf bifurcation takes place at τ num
H,2p = 4590.

Moreover, at τ = 5060, the breathing two-pulse solution becomes unstable and dies out. We
note that we have observed breathing two-pulse solutions for which the pulse widths breath
in an antisymmetric manner.

Scattering of pulses is also observed in the three-component model (1.7). In the left frame
of Fig. 17, we show the V -component of a two-pulse solution in which the pulses initially
approach each other, spend a substantial amount of time at a nearly constant distance from
each other with a significantly-decreased amplitude, and then regain their original amplitudes
and repel each other. The pulses continue to repel each other until they reflect off the bound-
ary, and the process repeats. A similar phenomenon has been observed in [15,16]. There the
unstable, stationary two-pulse, which the two-pulse data approaches, is called a ‘scattor’ (or
‘separator’). The importance of a scattor stems from the observation made in [15,16] that
the forward evolution of two-pulse data that approaches it is determined by where that data
lies with respect to the stable and unstable manifolds of the scattor or separator solution. The
relation between scattors and the two-pulse solutions constructed in this article is the subject
of future investigation.

We emphasize that the time interval shown in Fig. 17 is long and that the length of time
where the two pulses are near to each other is also long in comparison to the time interval
over which the pulses move an O(1) distance. Moreover, we found that the duration of this
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Fig. 16 Stable breathing one-pulse and two-pulse solutions. For the simulation shown in the left frame,
τ = 49.7, and the other parameters are (α, β, γ, D, θ, ε) = (6, 3, 4, 10, 1, 0.1). Also, we note that the interval
used in the simulation is ξ ∈ [−100, 100], however we have displayed only a subinterval to better display
the breathing behavior. For the simulation shown in the right frame, τ = 5000, and the other parameters
are (α, β, γ, D, θ, ε) = (2.2, −1, 0, 10, 1, 0.01). Also, we note that the interval used in the simulation is
ξ ∈ [−1000, 1000]

Fig. 17 Scattering of two pulses. In the left frame, we show the V -component over a long time interval,
and in the right frame we show the U -component during the third central scattering event (not shown for the
V -component). The parameter values are (α, β, γ, D, τ, θ, ε) = (6, 3, 2, 2, 6500, 1, 0.01)

time interval can be changed by varying the parameter values. Finally, it is worth noting
that, during the time that the two pulses are near the boundaries, they are also near their
counterparts across the boundary, in what also appears to be a scattor state.

To conclude this brief section illustrating some of the pulse dynamics, we show the spatio-
temporal evolution of four-pulse initial data in Fig. 18. Initially, the four pulses approach each
other. Then, they start to breath in a time-periodic manner, until finally the middle two pulses
die out and the two remaining pulses become stationary. In the right frame, we have zoomed
in on the time interval containing the last few breathing periods, and here the destabilization
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Fig. 18 The spatio-temporal dynamics of a solution with symmetric four-pulse initial data. The parameter
values are (α, β, γ, D, τ, θ, ε) = (2.1, −1, 0, 5, 3900, 1, 0.01). Note that we actually give an asymmetric
two-pulse as initial condition and just ‘mirrored’ the domain, this can be done because of the Neumann bound-
ary conditions. Note that the time interval shown in the left frame is so long that the breathing is not visible.
Therefore, in the right frame, we zoomed in on the time interval [11.2×106, 11.4×106] for the same solution,
so that the breathing is clearly visible

process is visible in detail. The maximal widths per period of the inner two pulses increase as
the time of annihilation gets closer and closer, while the minimal widths decrease. One can
see that during the final oscillation the maximal pulse widths exceed the lengths of the gaps
between the pulses. Finally, stepping back out to the time scale shown in the left frame, one
sees that the time asymptotic state is a stable two-pulse solution of the type constructed in Sect.
3, with pulse centers well inside ξ = −1000 and ξ = 1000 on the domain ξ ∈ [−2000, 2000].
7.2 Conclusions and Discussion

In this article, we established the existence of stationary and travelling one-pulse solutions
of the three-component model (1.6), as well as the existence of stationary two-pulse solu-
tions. The main results are presented in Theorem 2.1, Lemma 2.1, and Theorem 3.1 for the
one-pulse solutions, and in Theorem 5.1 for the two-pulse solutions. Moreover, we studied
various bifurcations of these solutions, including the saddle-node bifurcation in which the
stationary one-pulse solutions are created (see Theorem 2.1), the bifurcation from stationary
to travelling one-pulses (showing that this may be either subcritical or supercritical depending
on the system parameters, see Lemma 4.1 and Corollary 4.2), and the saddle-node bifurcation
of two-pulse solutions, see Fig. 13.

In the course of this analysis, we also showed that this three-component system constitutes
an ideal system on which to study pulse dynamics. On one hand, it is sufficiently simple for
analysis using geometric singular perturbation theory, with all of the reaction terms, except
for one, being linear. On the other hand, it is sufficiently nonlinear to support rich pulse
dynamics. Indeed, the extent of this richness was first demonstrated in [15,16,18,22], and
these interacting pulse solutions exist also for the scaled Eq. 1.6 studied here. We think that
the analysis presented in this work offers a useful starting point for the analysis of these
various pulse interaction scenarios.

Finally, we considered the limit in which the three-component system (1.6) reduces to the
more classical two-component system (6.1). This two-component system is almost the same
as the FitzHugh–Nagumo equations, except that the second species (inhibitor) also diffuses
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here. It is shown that the two-component system possesses only the one-pulse solutions,
and not the two-pulse solutions of the type studied here. Hence, the addition of the third
component, as introduced in [22], is essential for the existence of two-pulse solutions.

Stability of the solutions studied here is an important topic, as is demonstrated for instance
by the bifurcations to breathing pulses shown in Fig. 16. This is the topic of a companion paper
[23], in which we use the Evans function and the NonLocal Eigenvalue Problem method [3]
to carry out this analysis.

The methods and analysis of this article can be extended to carry out the analysis of pulse
solutions in the three-component model with heterogeneity that is studied in [25]. There,
heterogeneity is introduced in (1.1) by making the constant term in the U -component vary
in space according to a smoothed out step function. The heterogeneity induces interesting
new pulse dynamics, such as rebounding off defects, pinning by defects, and penetration of
defects, as observed in numerical simulations. The invariant manifold theory from the field of
geometric singular perturbation theory that we have used in this article, as well as the Melni-
kov conditions that we used, can also be applied to these types of heterogeneous systems, so
that the pulse solutions may be constructed. In conjunction with these observations, we point
to an earlier example in which geometric singular perturbation theory was used to establish
the existence of standing wave solutions in a RD model of the Fabry-Perot interferometer,
which involves spatially dependent coefficients. See [21].
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