177 research outputs found

    Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia

    Get PDF
    Background: Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at elevated risk of developing psychiatric illness owing to both genetic predisposition and increased burden of environmental stress. Emerging evidence indicates a disruption of brain network connectivity in young offspring of patients with bipolar disorder and schizophrenia, but the age trajectories of these brain networks in this high-familial-risk population remain to be elucidated. Methods: A total of 271 T1-weighted and diffusion-weighted scans were obtained from 174 offspring of at least 1 parent diagnosed with bipolar disorder (n = 74) or schizophrenia (n = 51) and offspring of parents without severe mental illness (n = 49). The age range was 8 to 23 years; 97 offspring underwent 2 scans. Anatomical brain networks were reconstructed into structural connectivity matrices. Network analysis was performed to investigate anatomical brain connectivity. Results: Offspring of parents with schizophrenia had differential trajectories of connectivity strength and clustering compared with offspring of parents with bipolar disorder and parents without severe mental illness, of global efficiency compared with offspring of parents without severe mental illness, and of local connectivity compared with offspring of parents with bipolar disorder. Conclusions: The findings of this study suggest that familial high risk of schizophrenia is related to deviations in age trajectories of global structural connectome properties and local connectivity strength.</p

    Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia

    Get PDF
    Background: Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at elevated risk of developing psychiatric illness owing to both genetic predisposition and increased burden of environmental stress. Emerging evidence indicates a disruption of brain network connectivity in young offspring of patients with bipolar disorder and schizophrenia, but the age trajectories of these brain networks in this high-familial-risk population remain to be elucidated. Methods: A total of 271 T1-weighted and diffusion-weighted scans were obtained from 174 offspring of at least 1 parent diagnosed with bipolar disorder (n = 74) or schizophrenia (n = 51) and offspring of parents without severe mental illness (n = 49). The age range was 8 to 23 years; 97 offspring underwent 2 scans. Anatomical brain networks were reconstructed into structural connectivity matrices. Network analysis was performed to investigate anatomical brain connectivity. Results: Offspring of parents with schizophrenia had differential trajectories of connectivity strength and clustering compared with offspring of parents with bipolar disorder and parents without severe mental illness, of global efficiency compared with offspring of parents without severe mental illness, and of local connectivity compared with offspring of parents with bipolar disorder. Conclusions: The findings of this study suggest that familial high risk of schizophrenia is related to deviations in age trajectories of global structural connectome properties and local connectivity strength.</p

    The Peroxisomal Targeting Signal 1 in sterol carrier protein 2 is autonomous and essential for receptor recognition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised <it>via </it>a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1.</p> <p>Results</p> <p>To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by <it>in vivo </it>measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects <it>in vivo</it>.</p> <p>Conclusions</p> <p>Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.</p

    Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia

    Get PDF
    Background: Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at elevated risk of developing psychiatric illness owing to both genetic predisposition and increased burden of environmental stress. Emerging evidence indicates a disruption of brain network connectivity in young offspring of patients with bipolar disorder and schizophrenia, but the age trajectories of these brain networks in this high-familial-risk population remain to be elucidated. Methods: A total of 271 T1-weighted and diffusion-weighted scans were obtained from 174 offspring of at least 1 parent diagnosed with bipolar disorder (n = 74) or schizophrenia (n = 51) and offspring of parents without severe mental illness (n = 49). The age range was 8 to 23 years; 97 offspring underwent 2 scans. Anatomical brain networks were reconstructed into structural connectivity matrices. Network analysis was performed to investigate anatomical brain connectivity. Results: Offspring of parents with schizophrenia had differential trajectories of connectivity strength and clustering compared with offspring of parents with bipolar disorder and parents without severe mental illness, of global efficiency compared with offspring of parents without severe mental illness, and of local connectivity compared with offspring of parents with bipolar disorder. Conclusions: The findings of this study suggest that familial high risk of schizophrenia is related to deviations in age trajectories of global structural connectome properties and local connectivity strength

    Biotic soil-plant interaction processes explain most of hysteretic soil CO2 efux response to temperature in cross-factorial mesocosm experiment

    Get PDF
    Ecosystem carbon fux partitioning is strongly infuenced by poorly constrained soil CO2 efux (Fsoil). Simple model applications (Arrhenius and Q10) do not account for observed diel hysteresis between Fsoil and soil temperature. How this hysteresis emerges and how it will respond to variation in vegetation or soil moisture remains unknown. We used an ecosystem-level experimental system to independently control potential abiotic and biotic drivers of the Fsoil-T hysteresis. We hypothesized a principally biological cause for the hysteresis. Alternatively, Fsoil hysteresis is primarily driven by thermal convection through the soil profle. We conducted experiments under normal, fuctuating diurnal soil temperatures and under conditions where we held soil temperature near constant. We found (i) signifcant and nearly equal amplitudes of hysteresis regardless of soil temperature regime, and (ii) the amplitude of hysteresis was most closely tied to baseline rates of Fsoil, which were mostly driven by photosynthetic rates. Together, these fndings suggest a more biologically-driven mechanism associated with photosynthate transport in yielding the observed patterns of soil CO2 efux being out of sync with soil temperature. These fndings should be considered on future partitioning models of ecosystem respiration.French governmentFrench National Research Agency (ANR) ANR-10-IDEX-0001-02 PSL ANR-11-INBS-0001ENSUniversity of Arizona (UofA)Philecology Foundation (Fort Worth, Texas, USA)Thomas R. Brown Family FoundationRegion Ile-de-France I-05-098/R 2011-11017735European Union (EU)National Science Foundation (NSF) 1417101 1331408European Union (EU) 625988UofA Office of Global InitiativesOffice of the Vice President of Research at the UofAUMI iGLOBES program at the Uof

    Preparing for Life: Plasma Proteome Changes and Immune System Development During the First Week of Human Life.

    Get PDF
    Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases

    Licensed Bacille Calmette-Guérin (BCG) formulations differ markedly in bacterial viability, RNA content and innate immune activation.

    Get PDF
    BACKGROUND: Bacille Calmette-Guérin (BCG), the live attenuated tuberculosis vaccine, is manufactured under different conditions across the globe generating formulations that may differ in clinical efficacy. Innate immune recognition of live BCG contributes to immunogenicity suggesting that differences in BCG viability may contribute to divergent activity of licensed formulations. METHODS: We compared BCG-Denmark (DEN), -Japan (JPN), -India (IND), -Bulgaria (BUL) and -USA in vitro with respect to a) viability as measured by colony-forming units (CFU), mycobacterial membrane integrity, and RNA content, and b) cytokine/chemokine production in newborn cord and adult peripheral blood. RESULTS: Upon culture, relative growth was BCG-USA > JPN ? DEN > BUL = IND. BCG-IND and -BUL demonstrated >1000-fold lower growth than BCG-JPN in 7H9 medium and >10-fold lower growth in commercial Middlebrook 7H11 medium. BCG-IND demonstrated significantly decreased membrane integrity, lower RNA content, and weaker IFN-? inducing activity in whole blood compared to other BCGs. BCG-induced whole blood cytokines differed significantly by age, vaccine formulation and concentration. BCG-induced cytokine production correlated with CFU, suggesting that mycobacterial viability may contribute to BCG-induced immune responses. CONCLUSIONS: Licensed BCG vaccines differ markedly in their content of viable mycobacteria possibly contributing to formulation-dependent activation of innate and adaptive immunity and distinct protective effects
    corecore