7 research outputs found

    Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD

    No full text
    Two general pathways for cell death have been defined, apoptosis and necrosis. Previous studies in Jurkat cells have demonstrated that the Fas-associated death domain (FADD) is required for Fas-mediated signaling to apoptosis and necrosis. Here we developed L929rTA cell lines that allow Tet-on inducible expression and FK506-binding protein (FKMP)-mediated dimerization of FADD, FADD-death effector domain (FADD-DED), or FADD-death domain (FADD-DD). We show that expression and dimerization of FADD leads to necrosis. However, pretreatment of the cells with the Hsp90 inhibitor geldanamycin, which leads to proteasome-mediated degradation of receptor interacting protein 1 (RIP1), reverts FKBP-FADD-induced necrosis to apoptosis. Expression and dimerization of FADD-DD mediates necrotic cell death. We found that FADD-DD is able to bind RIP1, another protein necessary for Fas-mediated necrosis. Expression and dimerization of FADD-DED initiates apoptosis. Remarkably, in the presence of caspase inhibitors, FADD-DED mediates necrotic cell death. Coimmunoprecipitation studies revealed that FADD-DED in the absence procaspase-8 C/A is also capable of recruiting RIP1. However, when procaspase-8 C/A and RIP1 are expressed simultaneously, FADD-DED preferentially recruits procaspase-8 C/A.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A novel caspase-2 complex containing TRAF2 and RIP1

    No full text
    The enzymatic activity of caspases is implicated in the execution of apoptosis and inflammation. Here we demonstrate a novel nonenzymatic function for caspase-2 other than its reported proteolytic role in apoptosis. Caspase-2, unlike caspase-3, -6, -7, -9, -11, -12, and -14, is a potent inducer of NF-kappaB and p38 MAPK activation in a TRAF2-mediated way. Caspase-2 interacts with TRAF1, TRAF2, and RIP1. Furthermore, we demonstrate that endogenous caspase-2 is recruited into a large and inducible protein complex, together with TRAF2 and RIP1. Structure-function analysis shows that NF-kappaB activation occurs independent of enzymatic activity of the protease and that the caspase recruitment domain of caspase-2 is sufficient for the activation of NF-kappaB and p38 MAPK. These results demonstrate the inducible assembly of a novel protein complex consisting of caspase-2, TRAF2, and RIP1 that activates NF-kappaB and p38 MAPK through the caspase recruitment domain of caspase-2 independently of its proteolytic activity
    corecore