3 research outputs found

    Pauli graphs, Riemann hypothesis, Goldbach pairs

    Full text link
    Let consider the Pauli group Pq=\mathcal{P}_q= with unitary quantum generators XX (shift) and ZZ (clock) acting on the vectors of the qq-dimensional Hilbert space via Xs>=s+1>X|s> =|s+1> and Zs>=ωss>Z|s> =\omega^s |s>, with ω=exp(2iπ/q)\omega=\exp(2i\pi/q). It has been found that the number of maximal mutually commuting sets within Pq\mathcal{P}_q is controlled by the Dedekind psi function ψ(q)=qpq(1+1p)\psi(q)=q \prod_{p|q}(1+\frac{1}{p}) (with pp a prime) \cite{Planat2011} and that there exists a specific inequality ψ(q)q>eγloglogq\frac{\psi (q)}{q}>e^{\gamma}\log \log q, involving the Euler constant γ0.577\gamma \sim 0.577, that is only satisfied at specific low dimensions qA={2,3,4,5,6,8,10,12,18,30}q \in \mathcal {A}=\{2,3,4,5,6,8,10,12,18,30\}. The set A\mathcal{A} is closely related to the set A{1,24}\mathcal{A} \cup \{1,24\} of integers that are totally Goldbach, i.e. that consist of all primes p2p2) is equivalent to Riemann hypothesis. Introducing the Hardy-Littlewood function R(q)=2C2pnp1p2R(q)=2 C_2 \prod_{p|n}\frac{p-1}{p-2} (with C20.660C_2 \sim 0.660 the twin prime constant), that is used for estimating the number g(q)R(q)qln2qg(q) \sim R(q) \frac{q}{\ln^2 q} of Goldbach pairs, one shows that the new inequality R(Nr)loglogNreγ\frac{R(N_r)}{\log \log N_r} \gtrapprox e^{\gamma} is also equivalent to Riemann hypothesis. In this paper, these number theoretical properties are discusssed in the context of the qudit commutation structure.Comment: 11 page

    Aujeszky’s Disease (Pseudorabies) in Pigs

    No full text
    corecore