1,562 research outputs found

    Specificity in V(D)J recombination: new lessons from biochemistry and genetics

    Get PDF
    Recent in vitro work on V(D)J recombination has helped to clarify its mechanism. The first stage of the reaction, which can be reproduced with the purified RAG1 and RAG2 proteins, is a site-specific cleavage that generates the same broken DNA species found in vivo. The cleavage reaction is closely related to known types of transpositional recombination, such as that of HIV integrase. All the site specificity of V(D)J recombination, including the 12/23 rule, is determined by the RAG proteins. The later steps largely overlap with the repair of radiation-induced DNA double-strand breaks, as indicated by the identity of several newly characterized factors involved in repair. These developments open the way for a thorough biochemical study of V(D)J recombination

    The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans

    Get PDF
    Cafestol and kahweol–diterpenes present in unfiltered coffee— strongly raise serum VLDL and LDL cholesterol and slightly reduce HDL cholesterol in humans. The mechanism of action is unknown. We determined whether the coffee diterpenes may affect lipoprotein metabolism via effects on lipid transfer proteins and lecithin:cholesterol acyltransferase in a randomized, double-blind cross-over study with 10 healthy male volunteers. Either cafestol (61–64 mg/day) or a mixture of cafestol (60 mg/day) and kahweol (48–54 mg/day) was given for 28 days. Serum activity levels of cholesterylester transfer protein, phospholipid transfer protein and lecithin:cholesterol acyltransferase were measured using exogenous substrate assays. Relative to baseline values, cafestol raised the mean (±S.D.) activity of cholesterylester transfer protein by 18±12% and of phospholipid transfer protein by 21±14% (both P<0.001). Relative to cafestol alone, kahweol had no significant additional effects. Lecithin:cholesterol acyltransferase activity was reduced by 11±12% by cafestol plus kahweol (P=0.02). It is concluded that the effects of coffee diterpenes on plasma lipoproteins may be connected with changes in serum activity levels of lipid transfer proteins

    Puerperal affective psychosis: is there a case for lithium prophylaxis?

    Get PDF

    Realizing orders as group rings

    Full text link
    An order is a commutative ring that as an abelian group is finitely generated and free. A commutative ring is reduced if it has no non-zero nilpotent elements. In this paper we use a new tool, namely, the fact that every reduced order has a universal grading, to answer questions about realizing orders as group rings. In particular, we address the Isomorphism Problem for group rings in the case where the ring is a reduced order. We prove that any non-zero reduced order RR can be written as a group ring in a unique ``maximal'' way, up to isomorphism. More precisely, there exist a ring AA and a finite abelian group GG, both uniquely determined up to isomorphism, such that RA[G]R\cong A[G] as rings, and such that if BB is a ring and HH is a group, then RB[H]R\cong B[H] as rings if and only if there is a finite abelian group JJ such that BA[J]B\cong A[J] as rings and J×HGJ\times H\cong G as groups. Computing AA and GG for given RR can be done by means of an algorithm that is not quite polynomial-time. We also give a description of the automorphism group of RR in terms of AA and GG

    Dilatant normal faulting in jointed cohesive rocks: a physical model study

    Get PDF
    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity are not well understood. We present an analogue modeling study using cohesive powder with pre-formed joint sets in the upper layer, varying the angle between joints and a rigid basement fault. We analyze interpreted map-view photographs at maximum displacement for damage zone width, number of connected joints, number of secondary fractures, degree of segmentation and area fraction of massively dilatant fractures. Particle imaging velocimetry provides insight into the deformation history of the experiments and illustrates the localization pattern of fault segments. Results show that with increasing angle between joint-set and basement-fault strike the number of secondary fractures and the number of connected joints increase, while the area fraction of massively dilatant fractures shows only a minor increase. Models without pre-existing joints show far lower area fractions of massively dilatant fractures while forming distinctly more secondary fractures
    corecore