295 research outputs found

    MARVELS-1b: A Short-period, Brown Dwarf Desert Candidate from the SDSS-III Marvels Planet Search

    Get PDF
    We present a new short-period brown dwarf (BD) candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III, and we designate the BD as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity (RV) measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5 m telescope. From our 20 RV measurements spread over a ~370 day time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 2.533 ± 0.025 km s^(–1), period P = 5.8953 ± 0.0004 days, and eccentricity consistent with circular. Independent follow-up RV data confirm the orbit. Adopting a mass of 1.37 ± 0.11 M_☉ for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0 ± 1.5 M_(Jup), a semimajor axis 0.071 ± 0.002 AU assuming an edge-on orbit, and is probably tidally synchronized. We find no evidence for coherent intrinsic variability of the host star at the period of the companion at levels greater than a few millimagnitudes. The companion has an a priori transit probability of ~14%. Although we find no evidence for transits, we cannot definitively rule them out for companion radii ≲ R_(Jup)

    Plasma convection at high latitudes using the EISCAT VHF and ESR incoherent scatter radars

    No full text
    International audienceThe recent availability of substantial data sets taken by the EISCAT Svalbard Radar allows several important tests to be made on the determination of convection patterns from incoherent scatter radar results. During one 30-h period, the Svalbard Radar made 15 min scans combining local field aligned observations with two, low elevation positions selected to intersect the two beams of the Common Programme Four experiment being simultaneously conducted by the EISCAT VHF radar at Tromsø. The common volume results from the two radars are compared. The plasma convection velocities determined independently by the two radars are shown to agree very closely and the combined three-dimensional velocity data used to test the common assumption of negligible field-aligned flow in this regime.Key words: Ionosphere (auroral ionosphere; polar ionosphere) - Magnetospheric physics (plasma convection

    EISCAT Svalbard radar-derived atmospheric tidal features in the lower thermosphere as compared with the numerical modeling ATM2

    Get PDF
    The EISCAT Svalbard radar (ESR) has obtained neutral wind field data down to 90 km altitude in two period runs in August 1998. This has been rendered possible by successful elimination of ground clutter echoes by the ESR staff. Features of the obtained tidal components are then comparatively studied with the ATM2 (Atmospheric Tidal Modeling Version 2) steady tidal model which assumes climatological background zonal flow. It is found that the results are fairly consistent with theoretical predictions that the diurnal component is almost evanescent with some indication of propagating characteristics, and that the semi-diurnal one is dominated by short vertical wavelength higher order mode prevalent at higher latitudes. The ter-diurnal component is also not in contradiction with non-linear interaction theory. Convincing delineation of these behaviors, however, awaits further study on the zonal wave number characteristics of relevant waves by longitudinal network collaborations

    Very-low-mass Stellar and Substellar Companions to Solar-like Stars from Marvels. III. A Short-period Brown Dwarf Candidate around an Active G0IV Subgiant

    Get PDF
    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T_(eff) = 5903 ± 42 K, surface gravity log (g) = 4.07 ± 0.16 (cgs), and metallicity [Fe/H] = -0.23 ± 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 ± 0.041 km s^(–1), period P = 9.0090 ± 0.0004 days, and eccentricity e = 0.226 ± 0.011. Adopting a mass of 1.16 ± 0.11 M_☉ for the subgiant host star, we infer that the companion has a minimum mass of 40.0 ± 2.5 M_(Jup). Assuming an edge-on orbit, the semimajor axis is 0.090 ± 0.003 AU. The host star is photometrically variable at the ~1% level with a period of ~13.16 ± 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 ± 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M_☉ if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v_(rot) sin i, but unusual for a subgiant of this T_(eff). This activity could be explained by ongoing tidal spin-up of the host star by the companion

    Protein aggregates act as a deterministic disruptor during bacterial cell size homeostasis

    Get PDF
    Mechanisms underlying deviant cell size fluctuations among clonal bacterial siblings are generally considered to be cryptic and stochastic in nature. However, by scrutinizing heat-stressed populations of the model bacterium Escherichia coli, we uncovered the existence of a deterministic asymmetry in cell division that is caused by the presence of intracellular protein aggregates (PAs). While these structures typically locate at the cell pole and segregate asymmetrically among daughter cells, we now show that the presence of a polar PA consistently causes a more distal off-center positioning of the FtsZ division septum. The resulting increased length of PA-inheriting siblings persists over multiple generations and could be observed in both E. coli and Bacillus subtilis populations. Closer investigation suggests that a PA can physically perturb the nucleoid structure, which subsequently leads to asymmetric septation
    • …
    corecore