4,803 research outputs found

    Adaptive false memory: Imagining future scenarios increases false memories in the DRM paradigm

    Get PDF
    Previous research has shown that rating words for their relevance to a future scenario enhances memory for those words. The current study investigated the effect of future thinking on false memory using the Deese/Roediger–McDermott (DRM) procedure. In Experiment 1, participants rated words from 6 DRM lists for relevance to a past or future event (with or without planning) or in terms of pleasantness. In a surprise recall test, levels of correct recall did not vary between the rating tasks, but the future rating conditions led to significantly higher levels of false recall than the past and pleasantness conditions did. Experiment 2 found that future rating led to higher levels of false recognition than did past and pleasantness ratings but did not affect correct recognition. The effect in false recognition was, however, eliminated when DRM items were presented in random order. Participants in Experiment 3 were presented with both DRM lists and lists of unrelated words. Future rating increased levels of false recognition for DRM lures but did not affect correct recognition for DRM or unrelated lists. The findings are discussed in terms of the view that false memories can be associated with adaptive memory functions

    Large tunable image-charge effects in single-molecule junctions

    Full text link
    The characteristics of molecular electronic devices are critically determined by metal-organic interfaces, which influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers (SAMs) show (molecule-dependent) level shifts as well as transport-gap renormalization, suggesting that polarization effects in the metal substrate play a key role in the level alignment with respect to the metal's Fermi energy. Here, we provide direct evidence for an electrode-induced gap renormalization in single-molecule junctions. We study charge transport in single porphyrin-type molecules using electrically gateable break junctions. In this set-up, the position of the occupied and unoccupied levels can be followed in situ and with simultaneous mechanical control. When increasing the electrode separation, we observe a substantial increase in the transport gap with level shifts as high as several hundreds of meV for displacements of a few \aa ngstroms. Analysis of this large and tunable gap renormalization with image-charge calculations based on atomic charges obtained from density functional theory confirms and clarifies the dominant role of image-charge effects in single-molecule junctions

    Study of a high spatial resolution 10B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Full text link
    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the 3He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of 3He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid 10B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here
    • …
    corecore