3 research outputs found

    Hypoxia-Inducible Factor 1 Alpha Is Dispensable for Host Defense of Group B Streptococcus Colonization and Infection.

    No full text
    Group B Streptococcus (GBS) is a leading cause of neonatal morbidity and mortality, and the primary source of exposure is the maternal vagina. Intrapartum antibiotic prophylaxis for GBS-positive mothers has reduced the incidence of GBS early-onset disease, however, potential long-lasting influence of an antibiotic-altered neonatal microbiota, and the frequent clinical sequelae in survivors of invasive GBS infection, compels alternative treatment options for GBS. Here, we examined the role of transcription factor hypoxia-inducible factor 1 alpha (HIF-1α), widely recognized as a regulator of immune activation during infection, in the host response to GBS. Given the importance of endogenous HIF-1α for innate immune defense, and the potential utility of HIF-1α stabilization in promoting bacterial clearance, we hypothesized that HIF-1α could play an important role in coordinating host responses to GBS in colonization and systemic disease. Counter to our hypothesis, we found that GBS infection did not induce HIF-1α expression in vaginal epithelial cells or murine macrophages, nor did HIF-1α deficiency alter GBS colonization or pathogenesis in vivo. Furthermore, pharmacological enhancement of HIF-1α did not improve control of GBS in pathogenesis and colonization models, while displaying inhibitory effects in vaginal epithelial cytokines and immune cell killing in vitro. Taken together, we conclude that HIF-1α is not a prominent aspect of the host response to GBS colonization or invasive disease, and its pharmacological modulation is unlikely to provide significant benefit against this important neonatal pathogen

    Actomyosin contractility requirements and reciprocal cell–tissue mechanics for cancer cell invasion through collagen-based channels

    No full text
    The interstitial tumor microenvironment is composed of heterogeneously organized collagen-rich porous networks as well as channel-like structures and interfaces which provide both barriers and guidance for invading cells. Tumor cells invading 3D random porous collagen networks depend upon actomyosin contractility to deform and translocate the nucleus, whereas Rho/Rho-associated kinase-dependent contractility is largely dispensable for migration in stiff capillary-like confining microtracks. To investigate whether this dichotomy of actomyosin contractility dependence also applies to physiological, deformable linear collagen environments, we developed nearly barrier-free collagen-scaffold microtracks of varying cross section using two-photon laser ablation. Both very narrow and wide tracks supported single-cell migration by either outward pushing of collagen up to four times when tracks were narrow, or cell pulling on collagen walls down to 50% of the original diameter by traction forces of up to 40 nN when tracks were wide, resulting in track widths optimized to single-cell diameter. Targeting actomyosin contractility by synthetic inhibitors increased cell elongation and nuclear shape change in narrow tracks and abolished cell-mediated deformation of both wide and narrow tracks. Accordingly, migration speeds in all channel widths reduced, with migration rates of around 45-65% of the original speed persisting. Together, the data suggest that cells engage actomyosin contraction to reciprocally adjust both own morphology and linear track width to optimal size for effective cellular locomotion

    PD-L1 siRNA-mediated silencing in acute myeloid leukemia enhances anti-leukemic T cell reactivity

    No full text
    Acute myeloid leukemia (AML) is an immune-susceptible malignancy, as demonstrated by its responsiveness to allogeneic stem cell transplantation (alloSCT). However, by employing inhibitory signaling pathways, including PD-1/PD-L1, leukemia cells suppress T cell-mediated immune attack. Notably, impressive clinical efficacy has been obtained with PD-1/PD-L1 blocking antibodies in cancer patients. Yet, these systemic treatments are often accompanied by severe toxicity, especially after alloSCT. Here, we investigated RNA interference technology as an alternative strategy to locally interfere with PD-1/PD-L1 signaling in AML. We demonstrated efficient siRNA-mediated PD-L1 silencing in HL-60 and patients' AML cells. Importantly, WT1-antigen T cell receptor(+) PD-1(+) 2D3 cells showed increased activation toward PD-L1 silenced WT1(+) AML. Moreover, PD-L1 silenced AML cells significantly enhanced the activation, degranulation, and IFN-γ production of minor histocompatibility antigen-specific CD8(+) T cells. Notably, PD-L1 silencing was equally effective as PD-1 antibody blockade. Together, our study demonstrates that PD-L1 silencing may be an effective strategy to augment AML immune-susceptibility. This provides rationale for further development of targeted approaches to locally interfere with immune escape mechanisms in AML, thereby minimizing severe toxicity. In combination with alloSCT and/or adoptive T cell transfer, this strategy could be very appealing to boost graft-versus-leukemia immunity and improve outcome in AML patients
    corecore