3 research outputs found

    Memory CD8<sup>+</sup> T cell heterogeneity is primarily driven by pathogen-specific cues and additionally shaped by the tissue environment

    Get PDF
    SummaryFactors that govern the complex formation of memory T cells are not completelyunderstood. A better understanding of thedevelopment of memory Tcell hetero-geneity is however required to enhance vaccination and immunotherapy ap-proaches. Here we examined the impact of pathogen- and tissue-specific cueson memory CD8+T cell heterogeneity using high-dimensional single-cell mass cy-tometry and a tailored bioinformatics pipeline. We identified distinct populationsof pathogen-specific CD8+T cells that uniquely connected to a specific pathogenor associated to multiple types of acute and persistent infections. In addition, thetissue environment shaped the memory CD8+T cell heterogeneity, albeit to alesser extent than infection. The programming of memory CD8+T cell differenti-ation during acute infection is eventually superseded by persistent infection.Thus, the plethora of distinct memory CD8+T cell subsets that arise upon infec-tion is dominantly sculpted by the pathogen-specific cues and further shaped by the tissue environment.Pattern Recognition and Bioinformatic

    A third vaccination with a single T cell epitope confers protection in a murine model of SARS-CoV-2 infection

    No full text
    Understanding the mechanisms and impact of booster vaccinations are essential in the design and delivery of vaccination programs. Here we show that a three dose regimen of a synthetic peptide vaccine elicits an accruing CD8+ T cell response against one SARS-CoV-2 Spike epitope. We see protection against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, but two dose approaches are insufficient to confer protection. The third vaccine dose of the single T cell epitope peptide results in superior generation of effector-memory T cells and tissue-resident memory T cells, and these tertiary vaccine-specific CD8+ T cells are characterized by enhanced polyfunctional cytokine production. Moreover, fate mapping shows that a substantial fraction of the tertiary CD8+ effector-memory T cells develop from re-migrated tissue-resident memory T cells. Thus, repeated booster vaccinations quantitatively and qualitatively improve the CD8+ T cell response leading to protection against otherwise lethal SARS-CoV-2 infection.Pattern Recognition and Bioinformatic

    PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors

    No full text
    Background: The clinical benefit of immunotherapeutic approaches against cancer has been well established although complete responses are only observed in a minority of patients. Combination immunotherapy offers an attractive avenue to develop more effective cancer therapies by improving the efficacy and duration of the tumor-specific T-cell response. Here, we aimed at deciphering the mechanisms governing the response to PD-1/PD-L1 checkpoint blockade to support the rational design of combination immunotherapy. Methods: Mice bearing subcutaneous MC-38 tumors were treated with blocking PD-L1 antibodies. To establish high-dimensional immune signatures of immunotherapy-specific responses, the tumor microenvironment was analyzed by CyTOF mass cytometry using 38 cellular markers. Findings were further examined and validated by flow cytometry and by functional in vivo experiments. Immune profiling was extended to the tumor microenvironment of colorectal cancer patients. Results: PD-L1 blockade induced selectively the expansion of tumor-infiltrating CD4+ and CD8+ T-cell subsets, co-expressing both activating (ICOS) and inhibitory (LAG-3, PD-1) molecules. By therapeutically co-targeting these molecules on the TAI cell subsets in vivo by agonistic and antagonist antibodies, we were able to enhance PD-L1 blockade therapy as evidenced by an increased number of TAI cells within the tumor micro-environment and improved tumor protection. Moreover, TAI cells were also found in the tumor-microenvironment of colorectal cancer patients. Conclusions: This study shows the presence of T cell subsets in the tumor micro-environment expressing both activating and inhibitory receptors. These TAI cells can be targeted by combined immunotherapy leading to improved survival.Comp Graphics & Visualisatio
    corecore