1,680 research outputs found

    Multiprocessor Iso-surface Volume Rendering

    Get PDF
    The rendering of iso-surfaces in a scalar 3D dataset can be performed with a new algorithm, called iso surface volume rendering. This algorithm does not introduce sampling artifacts or artifacts due to triangularization. The risk to skip very small details by insufficient re-sampling is also eliminated. Another advantage is its speed compared to conventional volume rendering. So far we achieved speeds in the order of ten frames per second on advanced CPU's. The multiprocessor implementation of this new algorithm uses a division of the voxel data into multiple cubes. These cubes are the basis for distributing the workload onto several processors. A scheduler process is running to perform the distribution of the workload. During the distribution of the workload the scheduler also eliminates the need to render invisible parts of the dataset. This reduces the part of the dataset which must be processed to one third of the original dataset for typical applications. Another major advantage of the scheduling algorithm is that the communication overhead is reduced by a factor of ten to twenty, which allows for the efficient use of many processors

    TACOP: A Cognitive Agent for a Naval Training Simulation Environment

    Get PDF
    The full version of this paper appeared in: Doesburg, W. A. van, Heuvelink, A., and Broek, E. L. van den (2005). TACOP: A cognitive agent for a naval training simulation environment. In M. Pechoucek, D. Steiner, and S. Thompson (Eds.), Proceedings of the Industry Track of the Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-05), p.34-41. July 25-29, Utrecht, The Netherlands

    Biocrystallisations: Milk treatments

    Get PDF
    Following two milk studies performed by the Louis Bolk Instituut, the hypothesis that processing of milk has an important effect on bio crystallisation pictures was investigated. Two raw whole milk tank samples, coded A and B, and 5 treatments performed on these samples (in total A/B 1-6) were offered for analysis. Evaluation was performed Visually and by means of computerized Texture analysis. Conclusions: Processing of milk has a strong effect on the crystallisation pictures. Especially homogenisation of milk had a large impact on the crystallisation picture. Surprisingly, this influence is higher than the treatment with ultra high temperatures at 140C

    Nickel catalysts for internal reforming in molten carbonate fuel cells

    Get PDF
    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In order to find suitable types of nickel catalysts and to obtain more knowledge about the deactivation mechanism(s) occurring during internal reforming, a series of nickel catalysts was prepared and subjected to stability tests at 973 K in an atmosphere containing steam and lithium and potassium hydroxide vapours. All the catalysts prepared showed a significant growth of the nickel crystallites during the test, especially one based on ¿-Al2O3 and a coprecipitated Ni/Al2O3 sample having a very high nickel content. However, this growth of nickel crystallites only partially explained the very strong deactivation observed in most cases. Only a coprecipitated nickel/alumina catalyst with high alumina content and a deposition-precipitation catalyst showed satisfactory residual activities. Addition of magnesium or lanthanum oxide to a coprecipitated nickel/alumina catalyst decreased the stability.\ud \ud Adsorption and retention of the alkali was the most important factor determining the stability of a catalyst in an atmosphere containing alkali hydroxides. This is because the catalyst bed may remain active if a small part of the catalyst bed retains all the alkali

    Zirconia as a support for catalysts: influence of additives on the thermal stability of the porous texture of monoclinic zirconia

    Get PDF
    A single-phase monoclinic zirconia (the thermodynamically stable modification up to a temperature of 1170°C), having a specific surface area of 67 m2g¿1 and a well-developed mesoporous texture, has been prepared by gel-precipitation followed by calcination at 450°C. A commercially available high-surface area monoclinic zirconia powder (SBET=71 m2g¿1) has also been studied. It was found that the specific surface area and pore volume of monoclinic zirconia both decreased markedly on increasing the calcination temperature; despite the fact that the crystal structure was that of the stable modification, this did not seem to impart any substantial resistance to thermal sintering. The thermal stability of monoclinic zirconia could however be improved significantly by addition (by an impregnation technique) of various oxides: CaO, Y2O3, La2O3 all led to an improvement in the thermal stability up to 900°C while MgO exhibited stabilizing properties only up to 700°C; the best results were obtained with La2O3. All the additives investigated other than MgO were found to bring about a partial transition of the monoclinic to a fluorite-like phase of zirconia upon heat treatment; this phase has been shown in the case of the CaO-doped sample to be cubic zirconia and in the cases of the Y2O3- and La2O3-doped samples to be tetragonal zirconia. As little as 20¿50% of a theoretical monolayer quantity of La2O3 was sufficient to give satisfactory thermal stability. The results can be explained by a model involving mass transport by a surface diffusion mechanism

    Desulfovibrio paquesii sp. nov., a hydrogenotrophic sulfate-reducing bacterium isolated from a synthesis-gas-fed bioreactor treating zinc- and sulfate-rich wastewater

    Get PDF
    A hydrogenotrophic, sulfate-reducing bacterium, designated strain SB1(T), was isolated from sulfidogenic sludge of a full-scale synthesis-gas-fed bioreactor used to remediate wastewater from a zinc smelter. Strain SB1(T) was found to be an abundant micro-organism in the sludge at the time of isolation. Hydrogen, formate, pyruvate, lactate, malate, fumarate, succinate, ethanol and glycerol served as electron donors for sulfate reduction. Organic substrates were incompletely oxidized to acetate. 16S rRNA gene sequence analysis showed that the closest recognized relative to strain SB1(T) was Desulfovibrio gigas DSM 1382(T) (97.5 % similarity). The G+C content of the genomic DNA of strain SB1(T) was 62.2 mol%, comparable with that of Desulfovibrio gigas DSM 1382(T) (60.2 mol%). However, the level of DNA-DNA relatedness between strain SB1(T) and Desulfovibrio gigas DSM 1382(T) was only 56.0 %, indicating that the two strains are not related at the species level. Strain SB1(T) could also be differentiated from Desulfovibrio gigas based on phenotypic characteristics, such as major cellular fatty acid composition (anteiso-C(15 : 0), iso-C(14 : 0) and C(18 : 1) cis 9) and substrate utilization. Strain SB1(T) is therefore considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio paquesii sp. nov. is proposed. The type strain is SB1(T) (=DSM 16681(T)=JCM 14635(T)

    Stabilized tetragonal zirconium oxide as a support for catalysts: evolution of the texture and structure on calcination in static air

    Get PDF
    Single-phase tetragonal zirconium oxides have been made by the incorporation of 5.4 mol-% of Y3+ or La3+ in ZrO2 to form solid solutions. The samples were prepared by controlled coprecipitation from aqueous solutions of the respective metal chlorides at room temperature and at a constant pH of 10, followed by calcination at 500°C (in the case of the Y3+ -doped sample) or 600°C (in the case of the La3+ -doped sample) to effectuate the crystallization into the tetragonal phase. The process of crystallization of the hydrous zirconia precursor was found to be retarded by the incorporation of Y3+ or La3+, the latter giving the greater effect. Upon crystallization, stabilized tetragonal samples were obtained with high specific surface areas (SBET ca. 88 m2 g¿1 for both the samples) and well-developed mesoporous textures but without any microporosity. Both the Y3+ - and the La3+ -alloyed ZrO2 samples were found to fully retain the tetragonal phase upon calcination over the entire range of temperatures studied (up to 900°C). The thermal stability of the texture of zirconia was found to be considerably improved, in comparison with the undoped monoclinic material, by the stabilization of the crystal structure in the defect tetragonal form. In particular, incorporation of 5.4 mol-% of La3+ resulted in a support material which had a remarkable thermal stability. It is shown that the improvements in the thermal stability are derived from a strong inhibition of the processes of crystallite growth and the accompanying intercrystallite sintering and thus of the process of mass transport; the mass transport probably occurs by a mechanism of surface diffusion

    Zirconia as a support for catalysts: Evolution of the texture and structure on calcination in air

    Get PDF
    Zirconia samples, prepared by precipitation from a solution of zirconyl chloride at a constant pH of 10, were calcined in flowing air at temperatures up to 850°C in order to study the development and stability of the porous texture in conjunction with the development of the structure of the resulting materials as a function of calcination temperature. The gel precipitation technique employed yields a high surface area zirconia (SBET of 111 m2g−1 after calcination at 450°C) with a well-developed mesoporous texture. The porous texture is, however, unstable under the experimental conditions employed, the initial high specific surface area being lost quite rapidly with increase in calcination temperature; calcination at 850°C brings about a reduction of the (BET) specific surface area by approximately 97%. Two process were identified as being responsible for the changes in pore structure and surface area: (i) crystallite growth and an accompanying phase transformation; and (ii) inter-crystallite sintering (neck-formation and growth); both these phenomena probably occur via a mechanism of surface diffusion. The inter-crystallite sintering process becomes more pronounced at higher calcination temperatures
    • …
    corecore