2 research outputs found

    Early intervention for children at risk of visual processing dysfunctions from 1 year of age: a randomized controlled trial protocol

    Get PDF
    BACKGROUND: An increasing number of children are suffering from brain damage-related visual processing dysfunctions (VPD). There is currently a lack of evidence-based intervention methods that can be used early in development. We developed a visual intervention protocol suitable from 1 year of age. The protocol is structured, comprehensive and individually adaptive, and is paired with quantitative outcome assessments. Our aim is to investigate the effectiveness of this first visual intervention program for young children with (a risk of) VPD. METHODS: This is a single-blind, placebo-controlled trial that is embedded within standard clinical care. The study population consists of 100 children born very or extremely preterm (< 30 weeks) at 1 year of corrected age (CA), of whom 50% are expected to have VPD. First, children undergo a visual screening at 1 year CA. If they are classified as being at risk of VPD, they are referred to standard care, which involves an ophthalmic and visual function assessment and a (newly developed) visual intervention program. This program consists of a general protocol (standardized and similar for all children) and a supplement protocol (adapted to the specific needs of the child). Children are randomly allocated to an intervention group (starting upon inclusion at 1 year CA) or a control group (postponed: starting at 2 years CA). The control group will receive a placebo treatment. The effectiveness of early visual intervention will be examined with follow-up visual and neurocognitive assessments after 1 year (upon completion of the direct intervention) and after 2 years (upon completion of the postponed intervention). DISCUSSION: Through this randomized controlled trial we will establish the effectiveness of a new and earl

    PLS3 Mutations in X-Linked Osteoporosis with Fractures

    No full text
    <p>Plastin 3 (PLS3), a protein involved in the formation of filamentous actin (F-actin) bundles, appears to be important in human bone health, on the basis of pathogenic variants in PLS3 in five families with X-linked osteoporosis and osteoporotic fractures that we report here. The bone-regulatory properties of PLS3 were supported by in vivo analyses in zebrafish. Furthermore, in an additional five families (described in less detail) referred for diagnosis or ruling out of osteogenesis imperfecta type I, a rare variant (rs140121121) in PLS3 was found. This variant was also associated with a risk of fracture among elderly heterozygous women that was two times as high as that among noncarriers, which indicates that genetic variation in PLS3 is a novel etiologic factor involved in common, multi-factorial osteoporosis.</p>
    corecore