23 research outputs found

    Long-Term Follow-Up Study on the Uptake of Genetic Counseling and Predictive DNA Testing in Inherited Cardiac Conditions

    Get PDF
    BACKGROUND: Inherited cardiac conditions present with a wide range of symptoms and may even result in sudden cardiac death. Relatives of probands with a confirmed pathogenic genetic variant are advised predictive DNA testing to enable prevention and treatment. In 2 previous cohort studies of 115 probands with a pathogenic variant, family uptake of genetic counseling was assessed in the first year(s) after test result disclosure to the proband. This study assesses uptake in these cohorts in the 14 to 23 years following disclosure. METHODS: Uptake was determined retrospectively using patient records. First-degree relatives, and second-degree relatives of a deceased first-degree relative suspected of having an inherited cardiac condition, were considered eligible. RESULTS: Of 717 eligible relatives (598 first-degree and 119 second-degree relatives), 60% attended genetic counseling. Most of them (68.6%) attended genetic counseling in the first year. A total of 98.4% of counseled relatives pursued predictive DNA testing. A total of 49.2% was identified as carrier. Median time between disclosure to the proband and counseling of relatives was 6 months (range: 0-187 months). Attending genetic counseling was observed more frequently in first-degree relatives, female relatives, primary arrhythmia syndromes, relatives with manifest inherited cardiac condition, relatives without children and families with sudden cardiac death in first-degree relatives <40 years. CONCLUSIONS: During median follow-up of 16 years, 60.0% of relatives attended genetic counseling, with 41.0% in the first year. Our results may suggest that some relatives are not or inadequately informed or that barriers against genetic counseling are present. Further research is needed into interventions facilitating family communication, increasing awareness among families and healthcare professionals, and lowering thresholds for genetic counseling

    Behavioral and cognitive functioning in individuals with Cantu syndrome

    Get PDF
    CantĂș syndrome (CS) is caused by pathogenic variants in ABCC9 and KCNJ8 encoding the regulatory and pore-forming subunits of ATP-sensitive potassium (KATP ) channels. CS is characterized by congenital hypertrichosis, distinctive facial features, peripheral edema, and cardiac and neurodevelopmental abnormalities. Behavioral and cognitive issues have been self-reported by some CS individuals, but results of formal standardized investigations have not been published. To assess the cognitive profile, social functioning, and psychiatric symptoms in a large group of CS subjects systematically in a cross-sectional manner, we invited 35 individuals (1-69 years) with confirmed ABCC9 variants and their relatives to complete various commonly applied standardized age-related questionnaires, including the Kaufman brief intelligence test 2, the social responsiveness scale-2, and the Achenbach system of empirically based assessment. The majority of CS individuals demonstrated average verbal and nonverbal intelligence compared to the general population. Fifteen percent of cases showed social functioning strongly associated with a clinical diagnosis of autism spectrum disorder. Both externalizing and internalizing problems were also present in this cohort. In particular, anxiety, anxiety or attention deficit hyperactivity disorder, and autism spectrum behaviors were predominantly observed in the younger subjects in the cohort (≄25%), but this percentage decreased markedly in adults

    Genetic Evaluation in a Cohort of 126 Dutch Pulmonary Arterial Hypertension Patients

    Get PDF
    Pulmonary arterial hypertension (PAH) is a severe, life-threatening disease, and in some cases is caused by genetic defects. This study sought to assess the diagnostic yield of genetic testing in a Dutch cohort of 126 PAH patients. Historically, genetic testing in the Netherlands consisted of the analysis of BMPR2 and SMAD9. These genes were analyzed in 70 of the 126 patients. A (likely) pathogenic (LP/P) variant was detected in 22 (31%) of them. After the identification of additional PAH associated genes, a next generation sequencing (NGS) panel consisting of 19 genes was developed in 2018. Additional genetic testing was offered to the 48 BMPR2 and SMAD9 negative patients, out of which 28 opted for NGS analysis. In addition, this gene panel was analyzed in 56 newly identified idiopathic (IPAH) or pulmonary veno occlusive disease (PVOD) patients. In these 84 patients, NGS panel testing revealed LP/P variants in BMPR2 (N = 4), GDF2 (N = 2), EIF2AK4 (N = 1), and TBX4 (N = 3). Furthermore, 134 relatives of 32 probands with a LP/P variant were tested, yielding 41 carriers. NGS panel screening offered to IPAH/PVOD patients led to the identification of LP/P variants in GDF2, EIF2AK4, and TBX4 in six additional patients. The identification of LP/P variants in patients allows for screening of at-risk relatives, enabling the early identification of PAH

    Echocardiography protocol for early detection of cardiac dysfunction in childhood cancer survivors in the multicenter DCCSS LATER 2 CARD study:Design, feasibility, and reproducibility

    Get PDF
    Background Cardiotoxicity is a well-known side effect after anthracyclines and chest radiotherapy in childhood cancer survivors (CCS). The DCCSS LATER 2 CARD (cardiology) study includes evaluation of echocardiographic measurements for early identification of CCS at highest risk of developing heart failure. This paper describes the design, feasibility, and reproducibility of the echocardiography protocol. Methods Echocardiograms from CCS and sibling controls were prospectively obtained at the participating centers and centrally analyzed. We describe the image acquisition, measurement protocol, and software-specific considerations for myocardial strain analyses. We report the feasibility of the primary outcomes of systolic and diastolic function, as well as reproducibility analyses in 30 subjects. Results We obtained 1,679 echocardiograms. Biplane ejection fraction (LVEF) measurement was feasible in 91% and 96% of CCS and siblings, respectively, global longitudinal strain (GLS) in 80% and 91%, global circumferential strain (GCS) in 86% and 89%, and >= 2 diastolic function parameters in 99% and 100%, right ventricle free wall strain (RVFWS) in 57% and 65%, and left atrial reservoir strain (LASr) in 72% and 79%. Intra-class correlation coefficients for inter-observer variability were 0.85 for LVEF, 0.76 for GLS, 0.70 for GCS, 0.89 for RVFWS and 0.89 for LASr. Intra-class correlation coefficients for intra-observer variability were 0.87 for LVEF, 0.82 for GLS, 0.82 for GCS, 0.85 for RVFWS and 0.79 for LASr. Conclusion The DCCSS LATER 2 CARD study includes a protocolized echocardiogram, with feasible and reproducible primary outcome measurements. This ensures high-quality outcome data for prevalence estimates and for reliable comparison of cardiac function parameters

    Diagnostic tools for early detection of cardiac dysfunction in childhood cancer survivors:Methodological aspects of the Dutch late effects after childhood cancer (LATER) cardiology study

    Get PDF
    Background: Cancer therapy-related cardiac dysfunction and heart failure are major problems in long-term childhood cancer survivors (CCS). We hypothesize that assessment of more sensitive echo- and electrocardiographic measurements, and/or biomarkers will allow for improved recognition of patients with cardiac dysfunction before heart failure develops, and may also identify patients at lower risk for heart failure. Objective: To describe the methodology of the Dutch LATER cardiology study (LATER CARD). Methods: The LATER CARD study is a cross-sectional study in long-term CCS treated with (potentially) cardiotoxic cancer therapies and sibling controls. We will evaluate 1) the prevalence and associated (treatment related) risk factors of subclinical cardiac dysfunction in CCS compared to sibling controls and 2) the diagnostic value of echocardiography including myocardial strain and diastolic function parameters, blood biomarkers for cardiomyocyte apoptosis, oxidative stress, cardiac remodeling and inflammation and ECG or combinations of them in the surveillance for cancer therapy-related cardiac dysfunction. From 2017 to 2020 we expect to include 1900 CCS and 500 siblings. Conclusions: The LATER CARD study will provide knowledge on different surveillance modalities for detection of cardiac dysfunction in long-term CCS at risk for heart failure. The results of the study will enable us to improve long-term follow-up surveillance guidelines for CCS at risk for heart failure

    Extensive Cardiac Function Analyses Using Contemporary Echocardiography in Childhood Cancer Survivors:A DCCSS LATER Study

    Get PDF
    Background: Childhood cancer survivors (CCS) are at risk for cardiotoxicity.Objectives: We sought to assess how cardiac dysfunction measurements in CCS overlap and are differentially influenced by risk factors.Methods: This cross-sectional Dutch Childhood Cancer Survivor Study evaluated echocardiograms of 1,397 ≄5-year CCS and 277 siblings. Of CCS, n = 1,254 received cardiotoxic (anthracyclines/mitoxantrone/radiotherapy involving the heart region [RTheart]) and n = 143 received potentially cardiotoxic (cyclophosphamide, ifosfamide, or vincristine) therapy. We assessed demographic, treatment-related, and traditional cardiovascular risk factors for cardiac dysfunction using multivariable logistic regression.Results: CCS were a median of 26.7 years after diagnosis; 49% were women. Abnormal left ventricular ejection fraction (LVEF) (defined as &lt;52% in men, &lt;54% in women) occurred most commonly in CCS treated with anthracyclines and RTheart combined (38%). Age/sex-specific abnormal global longitudinal strain (GLS) occurred most commonly in CCS treated with RTheart, either with (41%) or without (38%) anthracyclines. Of CCS with normal LVEF, 20.2% showed abnormal GLS. Diastolic dysfunction grade ≄II was rare. Abnormal LVEF was mainly associated with female sex, anthracycline dose, and only in women, RTheart dose. Abnormal GLS was associated with female sex, RTheart dose, diastolic blood pressure, and only in women, anthracycline dose. Cyclophosphamide, ifosfamide, and vincristine were not associated with LVEF or GLS. Compared with siblings, CCS showed higher risk of abnormal LVEF (OR: 2.9; 95% CI: 1.4-6.6) and GLS (OR: 2.1; 95% CI: 1.2-3.7), independent of (potentially) cardiotoxic treatment-related and cardiovascular risk factors.Conclusions: Abnormal LVEF and GLS constitute complementary measures of systolic dysfunction among long-term CCS. Their diagnostic value may differ according to cardiotoxic exposures. Also, CCS have residual, unexplained risk of cardiac dysfunction.</p

    Diagnostic tools for early detection of cardiac dysfunction in childhood cancer survivors: Methodological aspects of the Dutch late effects after childhood cancer (LATER) cardiology study

    Get PDF
    Background: Cancer therapy-related cardiac dysfunction and heart failure are major problems in long-term childhood cancer survivors (CCS). We hypothesize that assessment of more sensitive echo- and electrocardiographic measurements, and/or biomarkers will allow for improved recognition of patients with cardiac dysfunction before heart failure develops, and may also identify patients at lower risk for heart failure. Objective: To describe the methodology of the Dutch LATER cardiology study (LATER CARD). Methods: The LATER CARD study is a cross-sectional study in long-term CCS treated with (potentially) cardiotoxic cancer therapies and sibling controls. We will evaluate 1) the prevalence and associated (treatment related) risk factors of subclinical cardiac dysfunction in CCS compared to sibling controls and 2) the diagnostic value of echocardiography including myocardial strain and diastolic function parameters, blood biomarkers for cardiomyocyte apoptosis, oxidative stress, cardiac remodeling and inflammation and ECG or combinations of them in the surveillance for cancer therapy-related cardiac dysfunction. From 2017 to 2020 we expect to include 1900 CCS and 500 siblings. Conclusions: The LATER CARD study will provide knowledge on different surveillance modalities for detection of cardiac dysfunction in long-term CCS at risk for heart failure. The results of the study will enable us to improve long-term follow-up surveillance guidelines for CCS at risk for heart failure

    Diagnostic tools for early detection of cardiac dysfunction in childhood cancer survivors: Methodological aspects of the Dutch late effects after childhood cancer (LATER) cardiology study

    Get PDF
    Background: Cancer therapy-related cardiac dysfunction and heart failure are major problems in long-term childhood cancer survivors (CCS). We hypothesize that assessment of more sensitive echo- and electrocardiographic measurements, and/or biomarkers will allow for improved recognition of patients with cardiac dysfunction before heart failure develops, and may also identify patients at lower risk for heart failure. Objective: To describe the methodology of the Dutch LATER cardiology study (LATER CARD). Methods: The LATER CARD study is a cross-sectional study in long-term CCS treated with (potentially) cardiotoxic cancer therapies and sibling controls. We will evaluate 1) the prevalence and associated (treatment related) risk factors of subclinical cardiac dysfunction in CCS compared to sibling controls and 2) the diagnostic value of echocardiography including myocardial strain and diastolic function parameters, blood biomarkers for cardiomyocyte apoptosis, oxidative stress, cardiac remodeling and inflammation and ECG or combinations of them in the surveillance for cancer therapy-related cardiac dysfunction. From 2017 to 2020 we expect to include 1900 CCS and 500 siblings. Conclusions: The LATER CARD study will provide knowledge on different surveillance modalities for detection of cardiac dysfunction in long-term CCS at risk for heart

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Predicting personal cardiovascular disease risk based on family health history:Development of expert-based family criteria for the general population

    Get PDF
    In inherited and familial cardiovascular diseases (CVDs), relatives without current symptoms can still be at risk for early and preventable cardiovascular events. One way to help people evaluate their potential risk of CVD is through a risk-assessment tool based on family health history. However, family criteria including inherited CVD risk to be used by laypersons are non-existent. In this project, we employed a qualitative study design to develop expert-based family criteria for use in individual risk assessment. In the first phase of the project, we identified potential family criteria through an online focus group with physicians with expertise in monogenic and/or multifactorial CVDs. The family criteria from phase one were then used as input for a three-round Delphi procedure carried out in a larger group of expert physicians to reach consensus on appropriate criteria. This led to consensus on five family criteria that focus on cardiovascular events at young age (i.e., sudden death, any CVD, implantable cardioverter-defibrillator, aortic aneurysm) and/or an inherited CVD in one or more close relatives. We then applied these family criteria to a high-risk cohort from a clinical genetics department and demonstrated that they have substantial diagnostic accuracy. After further evaluation in a general population cohort, we decided to only use the family criteria for first-degree relatives. We plan to incorporate these family criteria into a digital tool for easy risk assessment by the public and, based on expert advice, will develop supporting information for general practitioners to act upon potential risks identified by the tool. [Figure not available: see fulltext.].</p
    corecore