8,459 research outputs found

    Neutrix Calculus and Finite Quantum Field Theory

    Get PDF
    In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like QED are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT,obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework.Comment: 10 pages; LaTeX; version to appear in J. Phys. A: Math. Gen. as a Letter to the Edito

    Adiabatic quantum computation and quantum phase transitions

    Full text link
    We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.Comment: 5 pages, 4 figures, accepted for publication in PR

    Improved Error-Scaling for Adiabatic Quantum State Transfer

    Full text link
    We present a technique that dramatically improves the accuracy of adiabatic state transfer for a broad class of realistic Hamiltonians. For some systems, the total error scaling can be quadratically reduced at a fixed maximum transfer rate. These improvements rely only on the judicious choice of the total evolution time. Our technique is error-robust, and hence applicable to existing experiments utilizing adiabatic passage. We give two examples as proofs-of-principle, showing quadratic error reductions for an adiabatic search algorithm and a tunable two-qubit quantum logic gate.Comment: 10 Pages, 4 figures. Comments are welcome. Version substantially revised to generalize results to cases where several derivatives of the Hamiltonian are zero on the boundar

    Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    Full text link
    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.Comment: 8 pages, 1 figur

    Single-electron tunneling in InP nanowires

    Get PDF
    We report on the fabrication and electrical characterization of field-effect devices based on wire-shaped InP crystals grown from Au catalyst particles by a vapor-liquid-solid process. Our InP wires are n-type doped with diameters in the 40-55 nm range and lengths of several microns. After being deposited on an oxidized Si substrate, wires are contacted individually via e-beam fabricated Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor temperature dependence. The distance between the electrodes varies between 0.2 and 2 micron. The electron density in the wires is changed with a back gate. Low-temperature transport measurements show Coulomb-blockade behavior with single-electron charging energies of ~1 meV. We also demonstrate energy quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure

    Optimal parametrizations of adiabatic paths

    Full text link
    The parametrization of adiabatic paths is optimal when tunneling is minimized. Hamiltonian evolutions do not have unique optimizers. However, dephasing Lindblad evolutions do. The optimizers are simply characterized by an Euler-Lagrange equation and have a constant tunneling rate along the path irrespective of the gap. Application to quantum search algorithms recovers the Grover result for appropriate scaling of the dephasing. Dephasing rates that beat Grover imply hidden resources in Lindblad operators.Comment: 4 pages, 2 figures; To prevent from misunderstanding, we clarified the discussion of an apparent speedup in the Grover algorithm; figures improved + minor change

    Adiabatic Quantum Computing with Phase Modulated Laser Pulses

    Full text link
    Implementation of quantum logical gates for multilevel system is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language.Comment: 19 pages, 6 figures, submitted to JOP

    Prognostic value of bcl-2 expression in invasive breast cancer.

    Get PDF
    Expression of the bcl-2 proto-oncogene was studied immunohistochemically in 251 invasive ductal breast carcinomas (median follow-up time 91 months, range 24-186 months) and the results were correlated with clinicopathological data and prognostic variables. Sixty-three (25%) tumours were scored bcl-2 negative and 188 (75%) tumours were bcl-2 positive. No relationship could be observed between bcl-2 status and tumour grade, pTNM staging or menopausal status. A strong positive relationship was demonstrated between bcl-2 immunoreactivity and oestrogen receptor status (P < 0.001) and progesterone receptor status (P < 0.001). No prognostic value was demonstrated for bcl-2 expression on disease-free survival and overall survival in axillary node-negative breast cancer patients. However, in axillary node-positive breast cancer patients multivariate analysis demonstrated absence of bcl-2 expression to be independently related to shortened disease-free survival (P = 0.003) and shortened overall survival (P < 0.001). Our results suggest a potential important role for bcl-2 expression as a modulator of response to adjuvant therapy in breast cancer
    • …
    corecore