27 research outputs found

    Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: Importance of the chemokine gradient

    Get PDF
    Background: Adoptive T-cell based immunotherapies constitute a promising approach to treat cancer, however, a major problem is to obtain effective and long-lasting anti-tumor responses. Lack of response may be due to insufficient trafficking of specific T cells to tumors. A key requirement for efficient migration of cytotoxic T cells is that they express chemokine receptors that match the chemokines produced by tumor or tumor-associated cells. Methods: In this study, we investigated whether the in vivo tumor trafficking of activated T cells could be enhanced by the expression of the chemokine receptor CX3CR1. Two human colorectal cancer cell lines were used to set up a xenograft tumor model in immunodeficient mice; the NCI-H630, constitutively expressing the chemokine ligand CX3CL1 (Fractalkine), and the RKO cell line, transduced to express CX3CL1. Results: Human primary T cells were transduced with the receptor CX3CR1-eGFP. Upon in vivo adoptive transfer of genetically modified CX3CR1-T cells in mice bearing NCI-H630 tumors, enhanced lymphocyte migration and tumor trafficking were observed, compared to mice receiving Mock-T cells, indicating improved homing ability towards ligand-expressing tumor cells. Furthermore, significant inhibition of tumor growth was found in mice receiving modified CX3CR1-T cells. In contrast, tumors formed by RKO cells transduced with the ligand (RKO-CX3CL1) were not affected, nor more infiltrated upon transfer of CX3CR1-T lymphocytes, likely because high levels of the chemokine were shed by tumor cells in the systemic circulation, thus nullifying the blood-tissue chemokine gradient. Conclusions: This study demonstrates that ectopic express

    T cells expressing a TCR-like antibody selected against the heteroclitic variant of a shared MAGE-A epitope do not recognise the cognate epitope

    Get PDF
    Antibodies-recognising peptides bound to the major histocompatibility complex (pMHC) represent potentially valuable and promising targets for chimeric antigen receptor (CAR) T cells to treat patients with cancer. Here, a human phage-Fab library has been selected using HLA-A2 complexed with a heteroclitic peptide variant from an epitope shared among multiple melanoma-associated antigens (MAGEs). DNA restriction analyses and phage ELISAs confirmed selection of unique antibody clones that specifically bind to HLA-A2 complexes or HLA-A2-positive target cells loaded with native or heteroclitic peptide. Antibodies selected against heteroclitic peptide, in contrast to native peptide, demonstrated significantly lower to even negligible binding towards native peptide or tumour cells that naturally expressed peptides. The binding to native peptide was not rescued by phage panning with antigen-positive tumour cells. Importantly, when antibodies directed against heteroclitic peptides were engineered into CARs and expressed by T cells, binding to native peptides and tumour cells was minimal to absent. In short, TCR-like antibodies, when isolated from a human Fab phage library using heteroclitic peptide, fail to recognise its native peptide. We therefore argue that peptide modifications to improve antibody selections should be performed with caution as resulting antibodies, either used directly or as CARs, may lose activity towards endogenously presented tumour epitopes

    TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets

    Get PDF
    Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2) and MAGE-A3243-258/HLA-DP4 (MA3/DP4). We molecularly characterized TCRαβ genes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRs in vitro upon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial

    Targeting melanoma with immunoliposomes coupled to anti-MAGEAI TCR-like single-chain antibody

    Get PDF
    Therapy of melanoma using T-cells with genetically introduced T-cell receptors (TCRs) directed against a tumor-selective cancer testis antigen (CTA) NY-ESO1 demonstrated clear antitumor responses in patients without side effects. Here, we exploited the concept of TCR-mediated targeting through introduction of single-chain variable fragment (scFv) antibodies that mimic TCRs in binding major histocompatibility complex-restricted CTA. We produced scFv antibodies directed against Melanoma AntiGEn A1 (MAGE A1) presented by human leukocyte antigen A1 (HLA-A1), in short M1/A1, and coupled these TCR-like antibodies to liposomes to achieve specific melanoma targeting. Two anti-M1/A1 antibodies with different ligand-binding affinities were derived from a phage-display library and reformatted into scFvs with an added cysteine at their carboxyl termini. Protein production conditions, ie, bacterial strain, temperature, time, and compartments, were optimized, and following production, scFv proteins were purified by immobilized metal ion affinity chromatography. Batches of pure scFvs were validated for specific binding to M1/A1-positive B-cells by flow cytometry. Coupling of scFvs to liposomes was conducted by employing different conditions, and an optimized procedure was achieved. In vitro experiments with immunoliposomes demonstrated binding of M1/A1-positive B-cells as well as M1/A1-positive melanoma cells and internalization by these cells using flow cyt

    Lack of B and T cell reactivity towards IDH1(R132H) in blood and tumor tissue from LGG patients

    Get PDF
    Purpose Mutations in the isocitrate dehydrogenase-1 gene (IDH1) occur at high frequency in grade II–III gliomas (LGGs). IDH1 mutations are somatic, missense and heterozygous afecting codon 132 in the catalytic pocket of the enzyme. In LGG, most mutations (90%) result in an arginine to histidine substitution (IDH1R132H) providing a neo-epitope that is expressed in all tumor cells. To assess the immunogenic nature of this epitope, and its potential use to develop T cell treatments, we measured IDH1R132H-specifc B and T cell reactivity in blood and tumor tissue of LGG patients. Methods Sera from IDH1R132H-mutated LGG patients (n=27) were assayed for the presence of a neo-specifc antibody response using ELISA. In addition, PBMCs (n=36) and tumor-infltrating lymphocytes (TILs, n=10) were measured for T cell activation markers and IFN-γ production by fow cytometry and ELISA. In some assays, frequencies of CD4 T cells specifc for mutated peptide presented by HLA-DR were enriched prior to T cell monitoring assays. Results Despite high sensitivity of our assay, we failed to detect IDH1R132H-specifc IgG in sera of LGG patients. Similarly, we did not observe CD4 T cell reactivity towards IDH1R132H in blood, neither did we observe such reactivity following preenrichment of frequencies of IDH1R132H-specifc CD4 T cells. Finally, we did not detect IDH1R132H-specifc CD4 T cells among TILs. Conclusions The absence of both humoral and cellular responses in blood and tumors of LGG patients indicates that IDH1R132H is not sufciently immunogenic and devaluates its further therapeutic exploitation, at least in the majority of LGG patients

    T Cells expressing a TCR-like antibody selected against the heteroclitic variant of a shared MAGE-A epitope do not recognise the cognate epitope

    Get PDF
    Antibodies-recognising peptides bound to the major histocompatibility complex (pMHC) represent potentially valuable and promising targets for chimeric antigen receptor (CAR) T cells to treat patients with cancer. Here, a human phage-Fab library has been selected using HLA-A2 complexed with a heteroclitic peptide variant from an epitope shared among multiple melanoma-associated antigens (MAGEs). DNA restriction analyses and phage ELISAs confirmed selection of unique antibody clones that specifically bind to HLA-A2 complexes or HLA-A2-positive target cells loaded with native or heteroclitic peptide. Antibodies selected against heteroclitic peptide, in contrast to native peptide, demonstrated significantly lower to even negligible binding towards native peptide or tumour cells that naturally expressed peptides. The binding to native peptide was not rescued by phage panning with antigen-positive tumour cells. Importantly, when antibodies directed against heteroclitic peptides were engineered into CARs and expressed by T cells, binding to native peptides and tumour cells was minimal to absent. In short, TCR-like antibodies, when isolated from a human Fab phage library using heteroclitic peptide, fail to recognise its native peptide. We therefore argue that peptide modifications to improve antibody selections should be performed with caution as resulting antibodies, either used directly or as CARs, may lose activity towards endogenously presented tumour epitope

    CD45RA(+)CCR7(-) CD8 T cells lacking co-stimulatory receptors demonstrate enhanced frequency in peripheral blood of NSCLC patients responding to nivolumab

    Get PDF
    Background Checkpoint inhibitors have become standard care of treatment for non-small cell lung cancer (NSCLC), yet only a limited fraction of patients experiences durable clinical benefit, highlighting the need for markers to stratify patient populations. Methods To prospectively identify patients showing response to therapy, we have stained peripheral blood samples of NSCLC patients treated with 2nd line nivolumab (n = 71), as well as healthy controls, with multiplex flow cytometry. By doing so, we enumerated 18 immune cell subsets and assessed expression for 28 T cell markers, which was followed by dimensionality reduction as well as rationale-based analyses. Results In patients with a partial response (PR), representing best overall response (BOR) according to RECIST v1.1, the number of CD8 T cells at baseline and during treatment is similar to those of healthy controls, but 2-fold higher than in patients with progressive and stable disease (PD and SD). CD8 T cell populations in PR patients show enhanced frequencies of T effector memory re-expressing CD45RA (TEMRA) cells, as well as T cells that express markers of terminal differentiatio

    Blood-based kinase activity profiling: A potential predictor of response to immune checkpoint inhibition in metastatic cancer

    Get PDF
    Background Many cancer patients do not obtain clinical benefit from immune checkpoint inhibition. Checkpoint blockade targets T cells, suggesting that tyrosine kinase activity profiling of baseline peripheral blood mononuclear cells may predict clinical outcome. Methods Here a total of 160 patients with advanced melanoma or non-small-cell lung cancer (NSCLC), treated with anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed cell death 1 (anti-PD-1), were divided into five discovery and cross-validation cohorts. The kinase activity profile was generated by analyzing phosphorylation of peripheral blood mononuclear cell lysates in a microarray comprising of 144 peptides derived from sites that are substrates for protein tyrosine kinases. Binary grouping into patients with or without clinical benefit was based on Response Evaluation Criteria in Solid Tumors V.1.1. Predictive models were trained using partial least square discriminant analysis (PLS-DA), performance of the models was evaluated by estimating the correct classification rate (CCR) using cross-validation. Results The kinase phosphorylation signatures segregated responders from non-responders by differences in canonical pathways governing T-cell migration, infiltration and co-stimulation. PLS-DA resulted in a CCR of 100% and 93% in the anti-CTLA-4 and anti-PD1 melanoma discovery cohorts, respectively. Cross-validation cohorts to estimate the accuracy of the predictive models showed CCRs of 83% for anti-CTLA-

    Gene Engineering T Cells with T-Cell Receptor for Adoptive Therapy

    Get PDF
    Prior to clinical testing of adoptive T-cell therapy with T-cell receptor (TCR)-engineered T cells, TCRs need to be retrieved, annotated, gene-transferred, and extensively tested in vitro to accurately assess specificity and sensitivity of target recognition. Here, we present a fundamental series of protocols that cover critical preclinical parameters, thereby enabling the selection of candidate TCRs for clinical testing
    corecore