31 research outputs found

    Determination of zearalenone and its metabolites in endometrial cancer by coupled separation techniques

    Get PDF
    This study presents a selective method of isolation of zearalenone (ZON) and its metabolite, α-zearalenol (α-ZOL), in neoplastically changed human tissue by accelerated solvent and ultrasonic extractions using a mixture of acetonitrile/water (84/16% v/v) as the extraction solvent. Extraction effectiveness was determined through the selection of parameters (composition of the solvent mixture, temperature, pressure, number of cycles) with tissue contamination at the level of nanograms per gram. The produced acetonitrile/water extracts were purified, and analytes were enriched in columns packed with homemade molecularly imprinted polymers. Purified extracts were determined by liquid chromatography (LC) coupled with different detection systems (diode array detection - DAD and mass spectrometry - MS) involving the Ascentis RP-Amide as a stationary phase and gradient elution. The combination of UE-MISPE-LC (ultrasonic extraction - molecularly imprinted solid-phase extraction - liquid chromatography) produced high (R ≈ 95–98%) and repeatable (RSD < 3%) recovery values for ZON and α-ZOL

    Stay focused! The effects of internal and external focus of attention on movement automaticity in patients with stroke

    Get PDF
    © 2015 Kal et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Dual-task performance is often impaired after stroke. This may be resolved by enhancing patients' automaticity of movement. This study sets out to test the constrained action hypothesis, which holds that automaticity of movement is enhanced by triggering an external focus (on movement effects), rather than an internal focus (on movement execution). Thirty-nine individuals with chronic, unilateral stroke performed a one-leg-stepping task with both legs in single- and dual-task conditions. Attentional focus was manipulated with instructions. Motor performance (movement speed), movement automaticity (fluency of movement), and dual-task performance (dual-task costs) were assessed. The effects of focus on movement speed, single- and dual-task movement fluency, and dual-task costs were analysed with generalized estimating equations. Results showed that, overall, singletask performance was unaffected by focus (p =.341). Regarding movement fluency, no main effects of focus were found in single- or dual-task conditions (p's ≥.13). However, focus by leg interactions suggested that an external focus reduced movement fluency of the paretic leg compared to an internal focus (single-task conditions: p =.068; dual-task conditions: p =.084). An external focus also tended to result in inferior dual-task performance (β = -2.38, p =.065). Finally, a near-significant interaction (β = 2.36, p =.055) suggested that dual-task performance was more constrained by patients' attentional capacity in external focus conditions. We conclude that, compared to an internal focus, an external focus did not result in more automated movements in chronic stroke patients. Contrary to expectations, trends were found for enhanced automaticity with an internal focus. These findings might be due to patients' strong preference to use an internal focus in daily life. Future work needs to establish the more permanent effects of learning with different attentional foci on re-automating motor control after stroke

    Is implicit motor learning preserved after stroke? A systematic review with meta-analysis

    Get PDF
    © 2016 Kal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients' automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved poststroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts

    Fish Food in the Deep Sea: Revisiting the Role of Large Food-Falls

    Get PDF
    The carcasses of large pelagic vertebrates that sink to the seafloor represent a bounty of food to the deep-sea benthos, but natural food-falls have been rarely observed. Here were report on the first observations of three large ‘fish-falls’ on the deep-sea floor: a whale shark (Rhincodon typus) and three mobulid rays (genus Mobula). These observations come from industrial remotely operated vehicle video surveys of the seafloor on the Angola continental margin. The carcasses supported moderate communities of scavenging fish (up to 50 individuals per carcass), mostly from the family Zoarcidae, which appeared to be resident on or around the remains. Based on a global dataset of scavenging rates, we estimate that the elasmobranch carcasses provided food for mobile scavengers over extended time periods from weeks to months. No evidence of whale-fall type communities was observed on or around the carcasses, with the exception of putative sulphide-oxidising bacterial mats that outlined one of the mobulid carcasses. Using best estimates of carcass mass, we calculate that the carcasses reported here represent an average supply of carbon to the local seafloor of 0.4 mg m−2d−1, equivalent to ~4% of the normal particulate organic carbon flux. Rapid flux of high-quality labile organic carbon in fish carcasses increases the transfer efficiency of the biological pump of carbon from the surface oceans to the deep sea. We postulate that these food-falls are the result of a local concentration of large marine vertebrates, linked to the high surface primary productivity in the study area
    corecore