56 research outputs found
Bose-Einstein Condensates in Strongly Disordered Traps
A Bose-Einstein condensate in an external potential consisting of a
superposition of a harmonic and a random potential is considered theoretically.
From a semi-quantitative analysis we find the size, shape and excitation
energy as a function of the disorder strength. For positive scattering length
and sufficiently strong disorder the condensate decays into fragments each of
the size of the Larkin length . This state is stable over a large
range of particle numbers. The frequency of the breathing mode scales as
. For negative scattering length a condensate of size
may exist as a metastable state. These finding are generalized to anisotropic
traps
Supermassive black holes do not correlate with dark matter halos of galaxies
Supermassive black holes have been detected in all galaxies that contain
bulge components when the galaxies observed were close enough so that the
searches were feasible. Together with the observation that bigger black holes
live in bigger bulges, this has led to the belief that black hole growth and
bulge formation regulate each other. That is, black holes and bulges
"coevolve". Therefore, reports of a similar correlation between black holes and
the dark matter halos in which visible galaxies are embedded have profound
implications. Dark matter is likely to be nonbaryonic, so these reports suggest
that unknown, exotic physics controls black hole growth. Here we show - based
in part on recent measurements of bulgeless galaxies - that there is almost no
correlation between dark matter and parameters that measure black holes unless
the galaxy also contains a bulge. We conclude that black holes do not correlate
directly with dark matter. They do not correlate with galaxy disks, either.
Therefore black holes coevolve only with bulges. This simplifies the puzzle of
their coevolution by focusing attention on purely baryonic processes in the
galaxy mergers that make bulges.Comment: 12 pages, 9 Postscript figures, 1 table; published in Nature (20
January 2011
Modified Newtonian Dynamics as an Alternative to Dark Matter
Modified Newtonian dynamics (MOND) is an empirically motivated modification
of Newtonian gravity or inertia suggested by Milgrom as an alternative to
cosmic dark matter. The basic idea is that at accelerations below a0 ~ 10^{-8}
cm/s^2 ~ cH0/6 the effective gravitational attraction approaches sqrt{gN*a0}
where gN is the usual Newtonian acceleration. This simple algorithm yields flat
rotation curves for spiral galaxies and a mass-rotation velocity relation of
the form M ~ V^4 that forms the basis for the observed luminosity-rotation
velocity relation-- the Tully-Fisher law. We review the phenomenological
success of MOND on scales ranging from dwarf spheroidal galaxies to
superclusters, and demonstrate that the evidence for dark matter can be equally
well interpreted as evidence for MOND. We discuss the possible physical basis
for an acceleration-based modification of Newtonian dynamics as well as the
extension of MOND to cosmology and structure formation.Comment: To be published in volume 40 of Annual Reviews of Astronomy &
Astrophysics. 36 pages plus 12 figures and 1 tabl
Differential Affinity and Catalytic Activity of CheZ in E. coli Chemotaxis
Push–pull networks, in which two antagonistic enzymes control the
activity of a messenger protein, are ubiquitous in signal transduction pathways.
A classical example is the chemotaxis system of the bacterium
Escherichia coli, in which the kinase CheA and the
phosphatase CheZ regulate the phosphorylation level of the messenger protein
CheY. Recent experiments suggest that both the kinase and the phosphatase are
localized at the receptor cluster, and Vaknin and Berg recently demonstrated
that the spatial distribution of the phosphatase can markedly affect the
dose–response curves. We argue, using mathematical modeling, that the
canonical model of the chemotaxis network cannot explain the experimental
observations of Vaknin and Berg. We present a new model, in which a small
fraction of the phosphatase is localized at the receptor cluster, while the
remainder freely diffuses in the cytoplasm; moreover, the phosphatase at the
cluster has a higher binding affinity for the messenger protein and a higher
catalytic activity than the phosphatase in the cytoplasm. This model is
consistent with a large body of experimental data and can explain many of the
experimental observations of Vaknin and Berg. More generally, the combination of
differential affinity and catalytic activity provides a generic mechanism for
amplifying signals that could be exploited in other two-component signaling
systems. If this model is correct, then a number of recent modeling studies,
which aim to explain the chemotactic gain in terms of the activity of the
receptor cluster, should be reconsidered
Toward Understanding Massive Star Formation
Although fundamental for astrophysics, the processes that produce massive
stars are not well understood. Large distances, high extinction, and short
timescales of critical evolutionary phases make observations of these processes
challenging. Lacking good observational guidance, theoretical models have
remained controversial. This review offers a basic description of the collapse
of a massive molecular core and a critical discussion of the three competing
concepts of massive star formation:
- monolithic collapse in isolated cores
- competitive accretion in a protocluster environment
- stellar collisions and mergers in very dense systems
We also review the observed outflows, multiplicity, and clustering properties
of massive stars, the upper initial mass function and the upper mass limit. We
conclude that high-mass star formation is not merely a scaled-up version of
low-mass star formation with higher accretion rates, but partly a mechanism of
its own, primarily owing to the role of stellar mass and radiation pressure in
controlling the dynamics.Comment: 139 pages, 18 figures, 5 tables, glossar
The Distribution of Dark Matter in Galaxies: the Core Radius Issue
I review the up-to-date status on the properties of the Dark Matter density
distribution around Galaxies. The rotation curves of spirals all conform to a
same Universal profile which can be uniquely decomposed as the sum of an
exponential thin stellar disk and a dark halo with a flat density core.
From dwarfs to giants galaxies, the halos embedding the stellar component
feature a constant density region of size and value , which are
inversely correlated. The fine structure of dark halos in the region of the
stellar disk has been derived for a number of low--luminosity disk galaxies:
the halo circular velocity increases almost linearly with radius out to the
edge of the stellar disk, implying, up there, an almost constant dark matter
density. This sets a serious discrepancy between the cuspy density distribution
predicted by N-body simulations of CDM cosmology, and those actually
detected around galaxies. The small scatter around the Fundamental Plane (FP)
of elliptical galaxies constraints the distribution of dark and luminous matter
in these systems. The measured central velocity dispersion in the FP
is linked to both photometric and dynamical properties of luminous and dark
matter. As a consequence, the well-known features of the FP imply that, inside
the effective radius , the stellar spheroid must dominate over the dark
matter, in contrast with CDM predictions.Comment: 14 pages, 10 figures, invited talk given at Beyond the Desert '03,
Ringberg, 11-15 July 200
Kinematics and Dynamics of the Galactic Stellar Halo
The structure, kinematics and dynamics of the Galactic stellar halo are reviewed including evidence of substructure in the spatial distribution and kinematics of halo stars. Implications for galaxy formation theory are subsequently discussed; in particular it is argued that the observed kinematics of stars in the outer Galactic halo can be used as an important constraint on viable galaxy formation scenarios
The contribution of microlensing surveys to the distance scale
In the early nineties several teams started large scale systematic surveys of
the Magellanic Clouds and the Galactic Bulge to search for microlensing
effects. As a by product, these groups have created enormous time-series
databases of photometric measurements of stars with a temporal sampling
duration and accuracy which are unprecedented. They provide the opportunity to
test the accuracy of primary distance indicators, such as Cepheids, RRLyrae
stars, the detached eclipsing binaries, or the luminosity of the red clump. We
will review the contribution of the microlensing surveys to the understanding
of the physics of the primary distance indicators, recent differential studies
and direct distance determinations to the Magellanic Clouds and the Galactic
Bulge.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages; uses Kluwer's crckapb.sty LaTeX style file, enclose
Controlling waves in space and time for imaging and focusing in complex media
In complex media such as white paint and biological tissue, light encounters nanoscale refractive-index inhomogeneities that cause multiple scattering. Such scattering is usually seen as an impediment to focusing and imaging. However, scientists have recently used strongly scattering materials to focus, shape and compress waves by controlling the many degrees of freedom in the incident waves. This was first demonstrated in the acoustic and microwave domains using time reversal, and is now being performed in the optical realm using spatial light modulators to address the many thousands of spatial degrees of freedom of light. This approach is being used to investigate phenomena such as optical super-resolution and the time reversal of light, thus opening many new avenues for imaging and focusing in turbid medi
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
- …