15 research outputs found

    Measure of phonon-number moments and motional quadratures through infinitesimal-time probing of trapped ions

    Full text link
    A method for gaining information about the phonon-number moments and the generalized nonlinear and linear quadratures in the motion of trapped ions (in particular, position and momentum) is proposed, valid inside and outside the Lamb-Dicke regime. It is based on the measurement of first time derivatives of electronic populations, evaluated at the motion-probe interaction time t=0. In contrast to other state-reconstruction proposals, based on measuring Rabi oscillations or dispersive interactions, the present scheme can be performed resonantly at infinitesimal short motion-probe interaction times, remaining thus insensitive to decoherence processes.Comment: 10 pages. Accepted in JPhys

    A New Option for a Search for Alpha Variation: Narrow Transitions with Enhanced Sensitivity

    Full text link
    We consider several transitions between narrow lines that have an enhanced sensitivity to a possible variation of the fine structure constant, alpha. This enhancement may allow a search to be performed with an effective suppression of the systematic sources of uncertainty that are unavoidable in conventional high-resolution spectroscopic measurements. In the future this may provide the strongest laboratory constraints on alpha variation

    Active laser frequency stabilization using neutral praseodymium (Pr)

    Full text link
    We present a new possibility for the active frequency stabilization of a laser using transitions in neutral praseodymium. Because of its five outer electrons, this element shows a high density of energy levels leading to an extremely line-rich excitation spectrum with more than 25000 known spectral lines ranging from the UV to the infrared. We demonstrate the active frequency stabilization of a diode laser on several praseodymium lines between 1105 and 1123 nm. The excitation signals were recorded in a hollow cathode lamp and observed via laser-induced fluorescence. These signals are strong enough to lock the diode laser onto most of the lines by using standard laser locking techniques. In this way, the frequency drifts of the unlocked laser of more than 30 MHz/h were eliminated and the laser frequency stabilized to within 1.4(1) MHz for averaging times >0.2 s. Frequency quadrupling the stabilized diode laser can produce frequency-stable UV-light in the range from 276 to 281 nm. In particular, using a strong hyperfine component of the praseodymium excitation line E = 16 502.616_7/2 cm^-1 -> E' = 25 442.742_9/2 cm^-1 at lambda = 1118.5397(4) nm makes it possible - after frequency quadruplication - to produce laser radiation at lambda/4 = 279.6349(1) nm, which can be used to excite the D2 line in Mg^+.Comment: 10 pages, 14 figure

    Multi-dimensional trio coherent states

    Full text link
    We introduce a novel class of higher-order, three-mode states called K-dimensional trio coherent states. We study their mathematical properties and prove that they form a complete set in a truncated Fock space. We also study their physical content by explicitly showing that they exhibit nonclassical features such as oscillatory number distribution, sub-poissonian statistics, Cauchy-Schwarz inequality violation and phase-space quantum interferences. Finally, we propose an experimental scheme to realize the state with K=2 in the quantized vibronic motion of a trapped ion.Comment: 17 pages, 12 figures, accepted for publication in J. Phys. A: Math. Ge

    Measurements of Z-boson resonance parameters in e+e- annihilation

    Get PDF
    We have measured the mass of the Z boson to be 91.14±0.12 GeV/c^2, and its width to be 2.42-0.35+0.45 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.46±0.10 GeV, corresponding to 2.8±0.6 neutrino species, with a 95%-confidence-level upper limit of 3.9

    First measurements of hadronic decays of the Z boson

    Get PDF
    We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision

    Initial measurements of Z-boson resonance parameters in e+e- annihilation

    Get PDF
    We have measured the mass of the Z boson to be 91.11±0.23 GeV/c^2, and its width to be 1.61-0.43+0.60 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.62±0.23 GeV, corresponding to 3.8±1.4 neutrino species
    corecore