19,236 research outputs found

    Gas-liquid critical parameters of asymmetric models of ionic fluids

    Full text link
    The effects of size and charge asymmetry on the gas-liquid critical parameters of a primitive model (PM) of ionic fluids are studied within the framework of the statistical field theory based on the collective variables method. Recently, this approach has enabled us to obtain the correct trends of the both critical parameters of the equisize charge-asymmetric PM without assuming ionic association. In this paper we focus on the general case of an asymmetric PM characterized by the two parameters: hard-sphere diameter-, λ=σ+/σ\lambda=\sigma_{+}/\sigma_{-} and charge, z=q+/qz=q_{+}/|q_{-}|, ratios of the two ionic species. We derive an explicit expression for the chemical potential conjugate to the order parameter which includes the effects of correlations up to the third order. Based on this expression we consider the three versions of PM: a monovalent size-asymmetric PM (λ1\lambda\neq 1, z=1z=1), an equisize charge-asymmetric PM (λ=1\lambda=1, z1z\neq 1) and a size- and charge-asymmetric PM (λ1\lambda\neq 1, z=2z=2). Similar to simulations, our theory predicts that the critical temperature and the critical density decrease with the increase of size asymmetry. Regarding the effects of charge asymmetry, we obtain the correct trend of the critical temperature with zz, while the trend of the critical density obtained in this approximation is inconsistent with simulations, as well as with our previous results found in the higher-order approximation. We expect that the consideration of the higher-order correlations will lead to the correct trend of the critical density with charge asymmetry.Comment: 23 pages, 6 figure

    Anti-parasitic activity of pelleted sainfoin (Onobrychis viciifolia) against Ostertagia ostertagi and Cooperia oncophora in calves

    Get PDF
    BACKGROUND: Increasing anthelmintic-resistance in nematodes of ruminants emphasises the need for sustainable parasite control. Condensed tannin-containing legume forages such as sainfoin (Onobrychis viciifolia) have shown promising anthelmintic properties in small ruminants but this has never been explored in cattle. Therefore, our aim was to examine the efficacy of sainfoin against cattle nematodes in vivo. METHODS: Fifteen Jersey male calves (2–4 month-old) were allocated into two groups and fed isoproteic and isoenergetic diets mainly composed of sainfoin pellets (Group SF; n = 9, three pens) or concentrate and grass-clover hay (Group CO; n = 6, two pens). After 16 days of adaptation, all animals were experimentally infected with 10,000 and 66,000 third-stage larvae of Ostertagia ostertagi and Cooperia oncophora, respectively. Egg excretion, blood parameters and bodyweights were recorded throughout the study. Worms were harvested by sieving for quantification and scanning electron microscopy (SEM) 42 days post-infection (dpi) when the calves were necropsied. RESULTS: The number of O. ostertagi adults in the abomasum was reduced by 50 % in Group SF compared with Group CO (P < 0.05). This was further reflected in higher albumin (P < 0.1) and lower pepsinogen levels (P < 0.05) in Group SF at 21 dpi, and structural damage of the worm cuticle could be visualised by SEM. Yet, the nematode egg excretion in Group SF was not significantly different from that of the controls (P > 0.05). Likewise, no statistical difference in total worm burdens of C. oncophora was found between the groups. Weight gains were lower for Group SF (P < 0.05), which may reflect lower digestibility and phosphorus levels in the SF diet, despite similar feed intake at pen-level. CONCLUSIONS: Overall, the effect of sainfoin on abomasal nematodes corroborates results from studies with small ruminants and encourages further investigations of the use of this crop for control of cattle nematodes

    Can Parity Violation in Neutrino Transport Lead to Pulsar Kicks?

    Get PDF
    In magnetized proto-neutron stars, neutrino cross sections depend asymmetrically on the neutrino momenta due to parity violation. However, these asymmetric opacities do not induce any asymmetric flux in the bulk interior of the star where neutrinos are nearly in thermal equilibrium. Consequently, parity violation in neutrino absorption and scattering can only give rise to asymmetric neutrino flux above the neutrino-matter decoupling layer. The kick velocity is substantially reduced from previous estimates, requiring a dipole field B1016B \sim 10^{16}~G to get vkickv_{kick} of order a few hundred km~s1^{-1}.Comment: REVTEX, 4 pages, no figures. Submitted to Phys. Rev. Letter

    Polymers pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore

    Get PDF
    We investigate polymer partitioning from polymer mixtures into nanometer size cavities by formulating an equation of state for a binary polymer mixture assuming that only one (smaller) of the two polymer components can penetrate the cavity. Deriving the partitioning equilibrium equations and solving them numerically allows us to introduce the concept of "polymers-pushing-polymers" for the action of non-penetrating polymers on the partitioning of the penetrating polymers. Polymer partitioning into a pore even within a very simple model of a binary polymer mixture is shown to depend in a complicated way on the composition of the polymer mixture and/or the pore-penetration penalty. This can lead to enhanced as well as diminished partitioning, due to two separate energy scales that we analyse in detail.Comment: 10 pages, 6 figure

    Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology

    Get PDF
    In proto-neutron stars with strong magnetic fields, the cross section for νe\nu_e (νˉe\bar\nu_e) absorption on neutrons (protons) depends on the local magnetic field strength due to the quantization of energy levels for the ee^- (e+e^+) produced in the final state. If the neutron star possesses an asymmetric magnetic field topology in the sense that the magnitude of magnetic field in the north pole is different from that in the south pole, then asymmetric neutrino emission may be generated. We calculate the absorption cross sections of \nue and \bnue in strong magnetic fields as a function of the neutrino energy. These cross sections exhibit oscillatory behaviors which occur because new Landau levels for the ee^- (e+e^+) become accessible as the neutrino energy increases. By evaluating the appropriately averaged neutrino opacities, we demonstrate that the change in the local neutrino flux due to the modified opacities is rather small. To generate appreciable kick velocity (300\sim 300 km~s1^{-1}) to the newly-formed neutron star, the difference in the field strengths at the two opposite poles of the star must be at least 101610^{16}~G. We also consider the magnetic field effect on the spectral neutrino energy fluxes. The oscillatory features in the absorption opacities give rise to modulations in the emergent spectra of νe\nu_e and νˉe\bar\nu_e.Comment: AASTeX, 25 pages. Expanded introduction and references. This revised version was accepted by ApJ in April 1998 (to appear in the Oct 1 issue

    Excitations in the Halo Nucleus He-6 Following The Li-7(gamma,p)He-6 Reaction

    Full text link
    A broad excited state was observed in 6-He with energy E_x = 5 +/- 1 MeV and width Gamma = 3 +/- 1 MeV, following the reaction Li-7(gamma,p)He-6. The state is consistent with a number of broad resonances predicted by recent cluster model calculations. The well-established reaction mechanism, combined with a simple and transparent analysis procedure confers considerable validity to this observation.Comment: 3 pages of LaTeX, 3 figures in PostScript, approved for publication in Phys. Rev. C, August, 200

    Interactions of the magnetospheres of stars and close-in giant planets

    Full text link
    Since the first discovery of an extrasolar planetary system more than a decade ago, hundreds more have been discovered. Surprisingly, many of these systems harbor Jupiter-class gas giants located close to the central star, at distances of 0.1 AU or less. Observations of chromospheric 'hot spots' that rotate in phase with the planetary orbit, and elevated stellar X-ray luminosities,suggest that these close-in planets significantly affect the structure of the outer atmosphere of the star through interactions between the stellar magnetic field and the planetary magnetosphere. Here we carry out the first detailed three-dimensional MagnetoHydroHynamics (MHD) simulation containing the two magnetic bodies and explore the consequences of such interactions on the steady-state coronal structure. The simulations reproduce the observable features of 1) increase in the total X-ray luminosity, 2) appearance of coronal hot spots, and 3) phase shift of these spots with respect to the direction of the planet. The proximate cause of these is an increase in the density of coronal plasma in the direction of the planet, which prevents the corona from expanding and leaking away this plasma via a stellar wind. The simulations produce significant low temperature heating. By including dynamical effects, such as the planetary orbital motion, the simulation should better reproduce the observed coronal heating

    Construction of the free energy landscape by the density functional theory

    Full text link
    On the basis of the density functional theory, we give a clear definition of the free energy landscape. To show the usefulness of the definition, we construct the free energy landscape for rearrangement of atoms in an FCC crystal of hard spheres. In this description, the cooperatively rearranging region (CRR) is clealy related to the hard spheres involved in the saddle between two adjacent basins. A new concept of the simultaneously rearranging region (SRR) emerges naturally as spheres defined by the difference between two adjacent basins. We show that the SRR and the CRR can be determined explicitly from the free energylandscape.Comment: 11 pages, 3 figures, submitted to J. Chem. Phy

    Time Scales for transitions between free energy minima of a hard sphere system

    Get PDF
    Time scales associated with activated transitions between glassy metastable states of a free energy functional appropriate for a dense hard sphere system are calculated by using a new Monte Carlo method for the local density variables. We calculate the time the system,initially placed in a shallow glassy minimum of the free energy, spends in the neighborhood of this minimum before making a transition to the basin of attarction of another free energy minimum. This time scale is found to increase with the average density. We find a crossover density near which this time scale increases very sharply and becomes longer than the longest times accessible in our simulation. This scale shows no evidence of dependence on sample size.Comment: 25 pages, Revtex, 6 postscript figures. Will appear in Phys Rev E, March 1996 or s

    Boundary-mediated electron-electron interactions in quantum point contacts

    Full text link
    An unusual increase of the conductance with temperature is observed in clean quantum point contacts for conductances larger than 2e^2/h. At the same time a positive magnetoresistance arises at high temperatures. A model accounting for electron-electron interactions mediated by bound- aries (scattering on Friedel oscillations) qualitatively describes the observation. It is supported by numerical simulation at zero magnetic field.Comment: To appear in Phys. Rev. Lett Updated version of Fig.
    corecore