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RESEARCH Open Access

Anti-parasitic activity of pelleted sainfoin
(Onobrychis viciifolia) against Ostertagia
ostertagi and Cooperia oncophora in calves
Olivier Desrues1*, Miguel Peña-Espinoza2, Tina V. A. Hansen1, Heidi L. Enemark2,3 and Stig M. Thamsborg1

Abstract

Background: Increasing anthelmintic-resistance in nematodes of ruminants emphasises the need for sustainable
parasite control. Condensed tannin-containing legume forages such as sainfoin (Onobrychis viciifolia) have shown
promising anthelmintic properties in small ruminants but this has never been explored in cattle. Therefore, our aim
was to examine the efficacy of sainfoin against cattle nematodes in vivo.

Methods: Fifteen Jersey male calves (2–4 month-old) were allocated into two groups and fed isoproteic and
isoenergetic diets mainly composed of sainfoin pellets (Group SF; n = 9, three pens) or concentrate and grass-clover
hay (Group CO; n = 6, two pens). After 16 days of adaptation, all animals were experimentally infected with 10,000
and 66,000 third-stage larvae of Ostertagia ostertagi and Cooperia oncophora, respectively. Egg excretion, blood
parameters and bodyweights were recorded throughout the study. Worms were harvested by sieving for
quantification and scanning electron microscopy (SEM) 42 days post-infection (dpi) when the calves were
necropsied.

Results: The number of O. ostertagi adults in the abomasum was reduced by 50 % in Group SF compared with
Group CO (P < 0.05). This was further reflected in higher albumin (P < 0.1) and lower pepsinogen levels (P < 0.05) in
Group SF at 21 dpi, and structural damage of the worm cuticle could be visualised by SEM. Yet, the nematode egg
excretion in Group SF was not significantly different from that of the controls (P > 0.05). Likewise, no statistical
difference in total worm burdens of C. oncophora was found between the groups. Weight gains were lower for
Group SF (P < 0.05), which may reflect lower digestibility and phosphorus levels in the SF diet, despite similar feed
intake at pen-level.

Conclusions: Overall, the effect of sainfoin on abomasal nematodes corroborates results from studies with small
ruminants and encourages further investigations of the use of this crop for control of cattle nematodes.

Keywords: Sainfoin, Condensed tannins, Nematodes, Ostertagia ostertagi, Cooperia oncophora, Cattle

Background
Gastrointestinal nematode (GIN) infections in grazing
ruminant livestock remain an important problem, which
affect health and welfare of the animals and cause serious
economic losses. While anthelmintic (AH) drugs are still
considered a keystone for GIN control in ruminants,
the awareness of the impact of drug resistance among
nematode populations [1] urges farmers and researchers

worldwide to explore new strategies, including feeding of
bioactive forages containing plant secondary metabolites
(PSM) with AH properties. While PSM can be adminis-
tered on a short term as herbal remedies, we opted for a
“nutraceutical” approach, which also consider bioactive
plants for their nutritive value and require long term con-
sumption to obtain substantial health benefits, including
AH effects [2]. Plants with condensed tannins (CT; syn.
proanthocyanidins) have been thoroughly investigated
in small ruminants, particularly the use of CT-rich tem-
perate/subtropical leguminous forages: sulla (Hedysarum
coronarium), lotus species (Lotus corniculatus and L.
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pedunculatus), sericea lespedeza (Lespedeza cuneata) and
sainfoin (Onobrychis viciifolia). Due to their nitrogen fixat-
ing capacity, legumes have an essential role to play for the
sustainability and competitiveness of grassland-livestock
systems in Europe [3].
CT are polyphenolic PSMs found throughout the plant

kingdom resulting from the polymerisation of flavan-3-ols
units; using either epi-/catechin, known as procyanidins
(PC), or epi-/gallocatechin, known as prodelphinidins
(PD). Both PC and PD have the ability to reversibly bind
proteins and other macromolecules. They have shown
beneficial effects on animal health through lower GIN
parasitism and bloat prevention, on animal nutrition due
to better use of dietary protein and by reducing the envir-
onmental impact of livestock by mitigating emissions of
greenhouse gases [4]. However, the bioactivity of CT in
vivo against GIN of small ruminants is known to be highly
variable depending on the plant source, the parasite and
the host [5]. Plants have different concentration and com-
position of CT according to species, cultivar, season and
general growth conditions. Also, it seems that a CT con-
centration of 3–4 % of dry matter (DM) in plant material
is a lower threshold for AH effects [5], albeit different
methods were used to estimate CT and may give variable
results. Moreover, CT with a higher proportion of PD
units have been associated with a higher efficacy both in
vivo and in vitro [6–10]. Forage preservation processes,
e.g. ensiling [11] or pelleting, releasing CT from the plant
cells, have been shown to alter the status of CT from “free”
to “bound”, notably to proteins, but may also positively in-
fluence the AH activity. Moreover, parasite species and
stages have different susceptibilities to CT [12–14]. In
addition, different host species are differently adapted to
CT and/or various gut environments ensuring the forma-
tion or release of CT-protein complexes [5]. This has been
illustrated, e.g. in sheep and goats using wattle tannin [15].
Although most in vitro assays and short-term CT feeding
trials have demonstrated a direct AH effect of CT [5], the
high nutritive value of some temperate legumes and the
protection of protein by CT from microbial degradation in
the rumen (rumen by-pass protein) can improve the
immune response and be indirectly detrimental to the
parasites [16, 17].
To the best of our knowledge no data are available on

potential AH effects of CT against cattle nematodes in
vivo. However, sainfoin seems to be a good candidate
based on in vitro studies [8, 18]. It is a crop known for
its appealing features such as high palatability, high pro-
tein levels and importance in biodiversity preservation.
In GIN infected small ruminants intake of sainfoin has
been consistently associated with a reduction in faecal
egg counts (FEC), except when CT levels were lower
than 2 % of DM intake [19–23]. Several studies have
indicated reduction in worm burdens at CT dietary

concentrations of 5.1 % and 8 %, without negative ef-
fects on animal performance [21, 22].
Our main objective was to assess whether feeding sain-

foin has an effect on pathophysiological and parasitological
measurements in calves experimentally infected with the
most pathogenic and prevalent GIN of cattle in temperate
regions: Ostertagia ostertagi and Cooperia oncophora.

Methods
Animals
Fifteen Jersey male calves with no grazing history (2.5
−4.5 month-old, 91.4 ± 24.0 kg [mean ± standard devi-
ation, SD]) were acquired from a commercial farm. Upon
arrival they were orally treated with fenbendazole (Pana-
cur®Vet 10 %, MSD Animal Health, 5 mg/kg bodyweight
[BW]) to ensure helminth-free condition (later confirmed
with negative FEC one week post treatment). During the
whole study period the calves were reared indoor in
solid concrete floored pens with straw bedding and ex-
ternal feeders. All animals were allowed an acclimatisa-
tion period of 16 days and were clinically assessed on a
daily basis throughout the study.

Feed constituents and nutritional analysis
Sainfoin (O. viciifolia) pellets were provided by Multifolia/
MG2MIX (Viâpres-le-Petit, France) Ltd., and consisted of
a pure-stand 3rd cut (cultivar: Perly) harvested in 2012 and
processed to obtain dehydrated pellets. The other feed
sources included grass-clover hay and a commercial
concentrate (Danish Ragna Grønmix©, Danish Agro Ltd.,
Karise, DK). The level of DM, crude protein (CP), neutral
detergent fibre (NDF) and ash was analysed in all feed
components by an accredited, authorised laboratory
(Eurofins Steins Laboratorium Ltd., Holstebro, DK). Di-
gestible organic matter (DOM) was calculated considering
OM content in feeds and OM digestibility (OMD) of hay,
sainfoin and concentrate that was analysed by near-infrared
(NIR) spectroscopy, an in vitro method [24] and in vitro en-
zymatic method (EFOS [25]), respectively. The values for
OMD of sainfoin and concentrate were corrected to in vivo
OMD (OMD %) using the following regression functions:
OMD %sainfoin = 4.1 + (0.959 × in vitro digestibilityTilley
& Terry %) (used for most forages) and OMD %concentrate =
22.0 + (0.752 × in vitro digestibilityEFOS %) [25]. Metabolis-
able energy levels, expressed in MJ/kg of DM, were
calculated from the net energy lactation values, which
were provided by manufacturers or laboratory, and di-
vided by 0.65 [26]. Mineral composition values were
obtained from suppliers. Feeds were analysed for CT
content by the acetone-butanol-HCl assay [27] with
pure fraction of CT from dried sainfoin as standard. In
addition, CT in sainfoin pellets were characterised after in
situ thiolysis [28] and LC-MS analysis [29]. This gives in-
formation on the content and composition of CT: their
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mean degree of polymerisation (mDP)-values (i.e. size),
percentages of PC versus PD type tannins, and cis versus
trans flavan-3-ol subunits.

Experimental infections
Infective third-stage larvae (L3) for inoculations were
isolated from donor calves experimentally infected with
O. ostertagi and C. oncophora following standard larval
culture procedures (14 days at 21 °C). The larvae were
stored at 13 °C for 3 months until evaluation of en-
sheathment and viability 1–3 days prior to inoculation.
Hundred baermannised L3 were then morphologically
differentiated [30], and a batch comprising 13 % O.
ostertagi and 87 % C. oncophora was used. All calves
(n = 15) were orally inoculated with a total dose of
10,000 L3 of O. ostertagi and 66,000 L3 of C. oncophora per
calf, given as three sub-doses for three consecutive days.

Experimental design, diets and sample collection
Sixteen days prior to the experimental infection the calves
were randomly allocated into two groups after stratification
by BW. The Sainfoin group (SF) (n = 9; 90.9 ± 28.1 kg) was
allocated to three pens, each containing three animals with
almost similar BWs in order to allow a better estimation of
the feed consumption and to avoid bullying (i.e. a pen for
the smaller, intermediate and larger calves). The Control
group (CO) (n = 6; 92.1 ± 18.5 kg) was allocated to two pens
of three calves. All calves were weighed weekly except for
the last time point.
In Group SF sainfoin pellets were gradually offered in

addition to hay until becoming the main feed component
(> 90 %) after a period of 12 days. Calves from Group CO
received commercial concentrate (ranging from 55 to
65 % of the diet) and hay of ryegrass-clover. The intakes of
sainfoin pellets, hay and commercial pellets were calcu-
lated every day for each pen (feed offered - feed refusals).
Four days prior to infection, the diets were formulated in
order to fulfil requirements of CP and energy and to ob-
tain similar levels adjusted for BW in both groups. Diet in
Group SF was offered close to ad libitum and the diet in
Group CO was adjusted with concentrate every second
day to match the diet of Group SF, with a maximum of 2
and 3 kg of DM for small and larger animals, respectively.
All animals had free access to water. Straw bedding con-
sumption was observed in both groups but could not be
recorded. Individual faecal samples were rectally collected
once weekly during the pre-patency period and every 2–3
days from 14 days post-infection (dpi) onwards. Faecal egg
counts (FEC) and larval cultures were prepared as de-
scribed in the next section. Individual blood samples were
collected by jugular venipuncture at weekly intervals, and
the recovered serum was stored at -20 °C until use. At
40−42 dpi all calves were euthanized with captive bolt
pistol followed by exsanguination.

Serum and faecal samples analysis
Serum samples obtained from week 0 to 6 were analysed
for pepsinogen as previously described [31] and for total
protein (TP), albumin (ALB) and inorganic phosphate
(IP) using an ADVIA1800 analyzer (Siemens). A more
detailed biochemical profile analysis was performed at
necropsy: alkaline phosphatase, alanine aminotransferase,
total bilirubin, cholesterol, creatinine, creatinine kinase, iron,
aspartate aminotransferase, urea, gamma-glutamyl trans-
peptidase, calcium, magnesium, sodium and potassium.
FEC were determined using a modified McMaster

technique with a sensitivity of 5 eggs per gram faeces
[32]. Faecal DM from each animal was determined during
the patency period from 3 g subsample dried at 60 °C for
24 hours, and FEC were expressed as the number of eggs
per gram of dried faeces (FECDM). Species-specific
FECDM was estimated from larval cultures that were pre-
pared at selected time points from pooled faecal samples
(10 g of faeces per animal) for each pen, which were mixed
with vermiculite and incubated for 13 days at 20–22 °C.

Recovery and analyses of adult nematodes
Immediately after euthanasia, the abomasum and the
whole small intestine from each animal were opened
separately and washed with 5 and 10 l of 38 °C warm sa-
line (0.9 % NaCl), respectively. For each organ, one sub-
sample of 500 ml of washed digesta content (i.e.
representing 10 % of the abomasum and 5 % of the small
intestine contents) was passed through a 38 μm metallic
sieve and retained material was stored in 70 % ethanol.
Worm counts and sex determination were performed.
Sex ratio was reported as the percentage of male worms
in the total worm burden. Changes in sex ratio are a
good indicator of worm expulsion for C. oncophora be-
cause expulsion initially includes male worms [33]. Worm
fecundity was assessed by counting the number of eggs
from 16 female worms of both nematode species per calf.
These worms were recovered from individual animals and
lysed in 200 μl of a 20 % household bleach solution. Eggs
were enumerated 10 min after lysis for O. ostertagi and
after 30 min for C. oncophora female worms. Finally, the
cleaned mucosa of the abomasum from one animal in
each group was scraped and digested in pepsin/hydro-
chloric acid for 2–3 hours [34]. Each digested mucosa was
passed over a 38 μm sieve, and the retained material was
examined for inhibited fourth-stage larvae.

Scanning electron microscopy (SEM)
Adult O. ostertagi were examined by SEM. The worms
were collected from randomly selected animals (CO: n = 2;
SF: n = 4) after washing with tap water, and fixed in PBS
with 2 % glutaraldehyde. They were merged per Group
and post-fixed in 1 % OsO4 and 0.05 M K3FeCN6 in
0.12 M cacodylate buffer for 2 hours at room temperature
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and stirred. Then, the samples were rinsed with 0.15 M
cacodylate buffer and distilled water, followed by dehydra-
tion in a gradient of ethanol concentrations in a critical
point dryer. The worms were coated with 4 nm gold with
a coating instrument (Leica EM ACE200) and loaded in a
scanning electron microscope (Phillips XL 30 FEG) for
visual analysis using Scandium software.

Statistical analyses
The effects of feeding sainfoin were assessed by linear
mixed-effects models fitted with maximum likelihood.
BW, faecal DM and biochemical markers were analysed
as repeated measures as described by [35]. These models
included Pen as random effect and the fixed effects were
Group and Time, and the interaction between Group
and Time if significant. Baseline measurements were used
as covariates for biochemical markers (week 0 value) and
BW (initial BW). Pepsinogen data were log-transformed
prior statistical analysis but presented as back-transformed
means. The variance homogeneity between observations
of the models was also tested. The residual plots were
used to validate the final models. Likewise, statistical
differences between groups in relation to: worm counts
(for O. ostertagi), sex ratio, fecundity of female worms
(i.e. number of eggs in utero), and additional blood
parameters (42 dpi) were analysed by mixed effects
models including post-hoc comparison of means by
Tukey’s test, with Group as fixed effect and Pen as random
effect. Counts data for adult worms of C. oncophora
and FECDM were over-dispersed therefore we used
generalised linear mixed-effects models for the negative
binomial family with Group as fixed effect and Pen as
random effect. Statistical analyses were carried out with
R (version 3.2.0).

Results
Feed composition and diets
The CT content of sainfoin pellets was 65 g/kg DM with
the acetone-butanol-HCl method and 19.6 g/kg DM
with the thiolysis LC-MS. CT had a high proportion of
PD (81 %) and cis-conformation (77 %) and a mDP of
11. No CT were found neither in hay nor in concentrate.
CP was low in hay compared to sainfoin and concentrate
(8.4, 17.2 and 20.4 % of DM, respectively) (Table 1). The
feed intakes for the week of experimental infection were
2.89 ± 0.05 for Group SF versus 2.87 ± 0.12 for Group
CO (mean of pens ± SD kg/100 kg of BW). The feed intake
in both groups increased gradually during the first 3 weeks
post-infection and then stabilised around 3.5 kg/100 kg of
BW for the last three weeks (mean of pens ± SD on the last
week: 3.53 ± 0.06 in Group SF versus 3.58 ± 0.19 in Group
CO). Dietary intakes are presented in Table 1 as pooled
means per feeding group during the experimental infection
period. CP dietary intake was marginally lower in Group
CO (0.52 ± 0.06 kg/100 kg of BW) compared to Group SF
(0.54 ± 0.04) but the energy intake was similar in both
groups. Yet, diet for Group CO had higher DOM
(2.31 ± 0.22) and NDF (1.36 ± 0.10) compared with
Group SF (DOM: 1.92 ± 0.19; NDF: 0.92 ± 0.14).

Health and bodyweights
Overall, the general condition of the animals was good
during the study period although the youngest animals
in Group CO had soft faeces to mild diarrhoea for most
of the study period. The faecal DM was significantly
higher in Group SF (F(1,3) = 17.48, P = 0.025) across the
patency period (pooled means [± SD] in Groups SF and
CO, respectively: 18.2 ± 0.8 % and 15.2 ± 1.1 %). Al-
though the effect of Time was not significant (P > 0.05),

Table 1 Nutrient contents of experimental feeds and daily dietary intake

Variables Experimental feed Daily dietary intake (mean across all weeks) (kg/100 kg BW)

Pelleted sainfoin Hay of grass/clover Concentrate Group SF Group CO

DM (%) 90.0 86.5 89.6 3.28 ± 0.33 3.36 ± 0.29

Ash (% of DM) 9.0 4.9 7.0

CP (% of DM) 17.2 8.4 20.4 0.54 ± 0.04 0.52 ± 0.06

NDF (% of DM) 26.0 57.7 28.6 0.92 ± 0.14 1.36 ± 0.10

DOM (% of DM) 58.7 56.1 77.6 1.92 ± 0.19 2.31 ± 0.22

ME (MJ/kg DM) 9.7 7.2 10.5 (MJ/% BW) 31.0 ± 2.74 30.5 ± 2.92

P (% of DM) 0.2 – 0.5

Ca (% of DM) 2.1 – 0.7

CT (% of DM) 6.5 0.0 0.0

Calves experimentally infected with gastrointestinal nematodes were allocated into two groups: Group CO (controls) fed hay and concentrate and Group SF fed
tannin-rich sainfoin pellets
Abbreviations: ME metabolisable energy expressed in mega joules (MJ), BW body weight, CP crude protein, NDF neutral detergent fibre, DOM digestible organic
matter, P phosphorus, Ca calcium, CT condensed tannins
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a gradual decrease in faecal DM was observed in Group
CO from 14 to 28 dpi (16.0 ± 2.8 % and 12.8 ± 4.3 %, re-
spectively) and then increased until 42 dpi (16.9 ± 3.1 %),
which was not seen in Group SF.
The BW of calves were significantly lower in Group

SF as compared with Group CO from 5 dpi onwards
(P < 0.05) with a significant interaction of Group × Time
(F(6,87) = 4.58, P = 0.0004). Moreover, the effect of the base-
line was also significant (initial BW; F(1,87) = 5189, P <
0.0001), as lower growth was observed in smaller animals.
Cumulative weight gains (mean ± SD) for the whole period
were 18.3 ± 11.3 and 31.2 ± 8.0 kg for Group SF and CO,
respectively (Fig. 1).

Blood parameters
Serum PEP levels remained very low throughout the
study in both groups (mean < 1 UTyr, Fig. 2a), indicating
low infection levels with O. ostertagi. Nevertheless, the
PEP levels were consistently lower in Group SF compared
with Group CO, and significant differences (t(3) = -3.74,
P = 0.033) were observed 21 dpi. Serum IP values were
significantly lower in Group SF (F(1,3) = 71.14, P = 0.0035)
throughout the study (Fig. 2b). Moreover, the baseline was
not significant (P > 0.05) and the means in both groups
seemed to level out after a drop around start of the pa-
tency period. Serum ALB levels decreased in both
groups (Fig. 2c) but with significant effect of baseline
(F(1,74) = 6.06, P = 0.016) and interaction Group × Time
(F(5,74) = 3.27, P = 0.010); levels were higher in Group
SF 21 dpi (t(3) = 2.77, P = 0.069) as compared with
Group CO. Serum protein levels gradually decreased
during the study in both groups without any significant
effect of Group (initial values: 71.2 ± 3.9; 68.0 ± 3.4 g/l;
final values: 52.4 ± 4.4 and 55.7 ± 7.4 g/l for Groups SF
and CO, respectively). Additionally, the levels of iron
(20.2 ± 7.5 and 37.1 ± 9.6 μmol/l in Group SF and CO;
GLH-test: Z = -3.84, P = 0.0001; Tukey) and gamma-

glutamyl transpeptidase (8.9 ± 1.5 and 14.2 ± 3.7 U/l in
Group SF and CO; GLH-test: Z = -3.94, P < 0.0001; Tukey)
differed significantly between the groups.

Faecal egg counts
The means of FECDM were not significantly different
between the groups (Fig. 3). Specific egg excretion of each
nematode species was estimated from the pooled larval
cultures, despite high individual variability of FECDM, and
showed a similar trend as FECDM. Yet, an overall predom-
inance of C. oncophora was found, particularly during the
peak of excretion (mean % ± SD: 64 ± 6; 80 ± 15; 88 ± 10
and 86 ± 19 at 19, 22, 26 and 28 dpi, respectively), which
was observed between 21 and 28 dpi for all calves except
one in Group CO, in which it occurred around 35 dpi.

Adult worms
The mean worm count of adult O. ostertagi was signifi-
cantly lower in Group SF compared with Group CO
(GLH-test: Z = -2.34, P = 0.019; Tukey; Table 2); a high
worm burden (3,300) was found in the smallest animal
in Group SF while all others had less than 1,500. The
comparison of the statistical models with or without pen
as a random effect was not significant with ANOVA. No
significant differences were seen in sex ratio or fecundity
of the female worms. Analysis of O. ostertagi adult worms
by SEM (Fig. 4) showed some aggregates of particles and
few localised damages of the external structure of 1/3 of
the worms from Group SF (n = 3). In comparison, the cu-
ticle of the worms from CO (n = 3) appeared clean and
smooth (Fig. 4a, b). No inhibited fourth-stage larvae were
recovered from the abomasal mucosa of the six animals.
For C. oncophora, no significant differences between

Group SF and CO (P > 0.05) were found regarding total
worm burden, sex ratio and female fecundity. However,
these results showed a strong variation within each
group (Table 2). In Group SF, three animals (one in each
pen) had close to none adult C. oncophora 42 dpi (≤ 100),
and were therefore not included in the analysis of sex ratio
and female fecundity.

Discussion
This study showed that calves fed pelleted sainfoin as
the sole, continuous diet had a significant reduction by
51 % in the worm burden of O. ostertagi 42 days after
experimental inoculation, as compared with animals fed
a control diet. Our results confirm AH effects of sainfoin
observed in earlier studies of abomasal nematodes in
sheep. In one study, sainfoin (6.1 % CT of dietary DM)
consumption for 16 days significantly reduced the number
of worms in an already established population of adult
H. contortus [21]. Similar results have been reported for
Teladorsagia spp. in naturally infected animals fed sain-
foin containing 8.3 % CT for 13 days [22]. Moreover, the

Fig. 1 Cumulative weight gains (kg) of calves per group. Control
group (CO; n = 6; dotted line) and Sainfoin group (SF; n = 9; solid line).
Error bars represent the standard deviation. *P < 0.05
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pelleting of sainfoin may have influenced the AH activity
as shown by Terrill et al. [36]. These researchers found
that consumption of the pelleted form of sericea lespedeza
was even more potent as compared with hay of the same
bioactive forage (both containing 6.4 % total CT) in redu-
cing the worm burden of H. contortus. This was, however,
not the case for T. colubriformis. Further, it has been
highlighted that the molecular structure (e.g. PD/PC ratio)
of CT may have a greater importance than the ratio of
bound/unbound forms of CT in the diet [37]. This hy-
pothesis was substantiated by our results. In fact, although
bound CT were not determined directly in our study, the
lower CT % obtained with thiolysis compared with
acetone-butanol-HCl may indicate that CT have a low ac-
cessibility in the pellets. However, CT in sainfoin is mainly
of the PD type and especially in our case (PD % > 80) that
is known to greatly influence the AH activity of CT in
vitro [8, 10].
Although the majority of feeding trials with sainfoin

have been associated with a significant reduction in FEC,
the non-significant egg count reduction in our study was
presumably due to the apparent lack of effect on C.
oncophora which was the dominant species in the inocu-
lum and responsible for the majority of the egg output
throughout the trial. A few studies found that a lower

female worm fecundity, rather than a lower worm burden,
was responsible for FEC reduction in goats and sheep [20,
23]. Other studies have reported reduced numbers of adult
H. contortus in lambs without any accompanying signifi-
cant effect on worm fecundity after feeding sainfoin for 16
or 70 days [21, 38].
We expect that the effect of sainfoin against O. oster-

tagi is mainly related to direct effects of CT rather than
an immunologically induced expulsion, since it is known
that the acquisition of protective immunity against O.
ostertagi needs a continuous larval exposure for longer
than the first grazing season to arise [39]. Moreover, it has
been shown that the loss of adult worms was very limited
even 50 dpi after a single infection with 10,000 L3 of O.
ostertagi [40]. Our study was not designed to pinpoint
which stage of infection was affected by sainfoin. The
levels of serum-pepsinogen indicated a low infection level
[41] and the albumin values were in all cases within the
range of healthy calves [42], although significant differ-
ences were found between groups. However, the lower
pepsinogen in Group SF at 21 dpi, when O. ostertagi
young adults had emerged from the gastric glands, could
indicate an effect of sainfoin at this stage of infection, or
perhaps even on establishment. In fact, Brunet et al. [18]
found that the larval exsheathment of O. ostertagi was

Fig. 2 Mean serum levels of biomarkers in calves experimentally infected and fed various diets. a Pepsinogen (PEP). b Inorganic phosphate (IP).
c Albumin (ALB). Control group (CO; n = 6; dotted lines) and Sainfoin group (SF; n = 9; solid lines). Error bars represent the standard deviation.
▪P < 0.1; *P < 0.05; **P < 0.01

Fig. 3 Mean faecal nematode egg counts during the patency period. a Faecal egg counts (FEC). b FEC adjusted for dry matter (FECDM). Control
group (CO; dashed line: arithmetic mean; hatched orange area: 95 % confidence interval) and Sainfoin group (SF; solid line: arithmetic mean;
hatched green area: 95 % confidence interval)
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reduced in vitro in the presence of sainfoin extracts. Fur-
thermore, sainfoin has been shown to reduce the larval
exsheathment process of H. contortus in the rumen of can-
nulated sheep fed with fresh sainfoin [43], and to inhibit
the following penetration into the abomasal mucosa after
in vitro incubation with sainfoin extracts [44]. The authors
linked these effects with structural alterations of the in-
fective larvae at both external and internal levels, depend-
ing on the presence of the sheath [45]. Moreover, we also
found local cuticular damage by SEM on adult O. ostertagi
of sainfoin-fed calves (Fig. 4). Previously, structural dam-
age of worms at intestinal and muscular levels have been
visualised by transmission electron microscopy of adult fe-
male H. contortus from goats fed sainfoin [46]. The exter-
nal surfaces of worms from goats was also damaged when
animals were fed sainfoin, tzalam (Lysiloma latisiliquum)

[47] and more recently sericea lespedeza [48]. Interest-
ingly, the latter study concluded that the degree of cuticle
damage was influenced by the length of exposure to CT;
all worms were affected after 77 treatment days whereas
only a smaller proportion was affected after 28 days. In
our case, adult worms were in contact with CT for ap-
proximately 25 days which may explain the inconsistencies
between worms. In addition, adult worms were pooled per
group and calves may have had different CT concentrations
in the digestive tract considering the variation in straw
consumption.
Our study showed no influence of sainfoin-feeding on

the worm counts of C. oncophora in the small intestine.
This is in accordance with a previous study of established
populations of C. curticei in experimentally infected sheep
fed sainfoin (6.1 % CT in DM) [21]. The same study re-
ported a significant reduction of abomasal species. In
addition, they found a significantly lower fecundity of
C. curticei, although no data in utero were presented
[21]. However, a reduction in numbers of adult C. cur-
ticei has been reported in naturally infected lambs fed
sulla (Hedysarum coronarium) which had a high CT
content (12 % CT of DM in the leaves) [49]. Despite
these examples, there seems to be an apparent lack of
bioactivity of CT in sainfoin against nematodes in the
small intestine. This may be due to a lower availability
or binding capacity in the small intestine where the
local conditions are different from the abomasum [5].
Accordingly, the majority of studies in sheep have re-
ported a greater effect of sainfoin against abomasal versus

Table 2 Parasitological data from worms recovered 42 days
post-infection

Adult nematodes Group Worm burden ♂ (%) ♀ fecundity

Ostertagia ostertagi CO 2,715 ± 894 44 ± 6 41 ± 09

SF 1,331 ± 947a 42 ± 7 43 ± 12

Cooperia oncophora CO 22,447 ± 17,639 34 ± 15 53 ± 45

SF 19,664 ± 22,496 29 ± 23 40 ± 36

Data (mean ± SD) representing worm burden by sieving, percentage males
and female fecundity based on the number of eggs in utero from 16 female
worms per animal. The calves were experimentally infected with Ostertagia
ostertagi and Cooperia oncophora and fed a tannin-rich diet (Group SF) or a
control diet (Group CO)
aindicates a significant difference between the groups (GLH-test: Z = -2.34,
P = 0.019; Tukey)

Fig. 4 External structural changes of adult Ostertagia ostertagi recovered from calves fed sainfoin for 58 days. Scanning electron microscopy of
representative worms recovered 42 days post-infection from Control group (CO) (a, b) or Sainfoin group (SF) (c, d). Left column: tail of the female
worm; Right column: close view of the cuticle
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small intestinal nematodes [21, 38, 50], but similar AH ef-
fect of sainfoin in the two gut compartments has also been
reported [23]. The opposite case: a better effect against
small intestinal nematodes, was only reported in studies of
sheep fed with quebracho as a source of CT that contains
profisetinidins, another type of flavanol basic units [51].
Controlled in vivo and in vitro studies with tannins against
cattle nematodes at species level are very limited. Recently,
it has been reported that O. ostertagi was more susceptible
to CT than C. oncophora in vitro [10], although such
difference was not found in other studies [8, 18]. In
vivo studies may yield a different result. The low number
of adult C. oncophora recovered from some calves in both
groups, 42 dpi, was likely related to the expulsion of
worms in those animals. In fact, a primary infection with
C. oncophora has been shown to elicit a Th2-biased im-
mune response against adult worms in high responder
type animals, which confers a rapid protective immunity
[33]. Moreover, in the same study the worm sex ratio
proved to be a good indicator of the worm expulsion as
males were first expelled, which was also observed in
our case.
In general, calves appeared healthy and showed no

signs of clinical disease. Group SF and had less soft
faeces compared with Group CO. Although we found
higher levels of iron and gamma-glutamyl transpepti-
dase in serum of calves of Group CO compared with
Group SF 42 dpi, only one value of serum iron in
Group SF was slightly lower than the reference range
for calves [42, 52]. Therefore we did not consider this
biologically significant. However, the mean levels of
inorganic phosphorus in Group SF were ≤ 1.3 mmol/l
from 21 dpi which is at the lower marginal threshold
for calves [53]. This emphasizes the need for possible
supplementation with phosphorus. In previous studies,
infected small ruminants fed sainfoin hay had similar
or improved weight gain with CT concentrations up to
8 % [21–23]. Yet, the relatively low number and vari-
able size of animals in our study preclude firm conclu-
sions on performance. Moreover, it was challenging to
maintain similar levels of CP and energy in the diets
of CO and SF groups with the low replication of feed
intake. Therefore the feed intake adjustments and nu-
tritional differences in favour of the concentrate-rich
diet in Group CO including higher digestible OM, NDF,
and phosphorus need to be considered as explanatory
factors of the relatively large difference in animal per-
formance observed in this study.

Conclusion
Pelleted sainfoin as a sole feed significantly reduced the
population of O. ostertagi in young calves. Our promis-
ing results confirm the potential value of sainfoin and
perhaps other tannin-rich forages with a high percentage

of prodelphinidins in integrated control of bovine oster-
tagiosis. Although O. ostertagi is the main species re-
sponsible for reduced productivity in grazing calves, the
apparent lack of effect against C. oncophora is a draw-
back and may hamper the practical use of sainfoin as a
“broad-spectrum” anthelmintic forage. More research is
needed to address the background of the lacking effect
against C. oncophora.
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