690 research outputs found

    Exploiting Lack of Hardware Reciprocity for Sender-Node Authentication at the PHY Layer

    Get PDF
    This paper proposes to exploit the so-called reciprocity parameters (modelling non-reciprocal communication hardware) to use them as decision metric for binary hypothesis testing based authentication framework at a receiver node Bob. Specifically, Bob first learns the reciprocity parameters of the legitimate sender Alice via initial training. Then, during the test phase, Bob first obtains a measurement of reciprocity parameters of channel occupier (Alice, or, the intruder Eve). Then, with ground truth and current measurement both in hand, Bob carries out the hypothesis testing to automatically accept (reject) the packets sent by Alice (Eve). For the proposed scheme, we provide its success rate (the detection probability of Eve), and its performance comparison with other schemes

    Distributed Beamforming with Wirelessly Powered Relay Nodes

    Get PDF
    This paper studies a system where a set of NN relay nodes harvest energy from the signal received from a source to later utilize it when forwarding the source's data to a destination node via distributed beamforming. To this end, we derive (approximate) analytical expressions for the mean SNR at destination node when relays employ: i) time-switching based energy harvesting policy, ii) power-splitting based energy harvesting policy. The obtained results facilitate the study of the interplay between the energy harvesting parameters and the synchronization error, and their combined impact on mean SNR. Simulation results indicate that i) the derived approximate expressions are very accurate even for small NN (e.g., N=15N=15), ii) time-switching policy by the relays outperforms power-splitting policy by at least 33 dB.Comment: 4 pages, 3 figures, accepted for presentation at IEEE VTC 2017 Spring conferenc

    Channel Impulse Response-based Distributed Physical Layer Authentication

    Get PDF
    In this preliminary work, we study the problem of {\it distributed} authentication in wireless networks. Specifically, we consider a system where multiple Bob (sensor) nodes listen to a channel and report their {\it correlated} measurements to a Fusion Center (FC) which makes the ultimate authentication decision. For the feature-based authentication at the FC, channel impulse response has been utilized as the device fingerprint. Additionally, the {\it correlated} measurements by the Bob nodes allow us to invoke Compressed sensing to significantly reduce the reporting overhead to the FC. Numerical results show that: i) the detection performance of the FC is superior to that of a single Bob-node, ii) compressed sensing leads to at least 20%20\% overhead reduction on the reporting channel at the expense of a small (<1<1 dB) SNR margin to achieve the same detection performance.Comment: 6 pages, 5 figures, accepted for presentation at IEEE VTC 2017 Sprin

    Solver and Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and High-Speed Applications

    Get PDF
    An implicit unfactored SSOR algorithm has been added to the overset Navier-Stokes CFD code OVERFLOW 2 for unsteady and moving body applications. The HLLEM and HLLC third-order spatial upwind convective flux models have been added for high-speed flow applications. A generalized upwind transport equation has been added for solution of the two-equation turbulence models and the species equations. The generalized transport equation is solved using an unfactored SSOR implicit algorithm. Three hybrid RANS/DES turbulence models have been added for unsteady flow applications. Wall function boundary conditions that include compressibility and heat transfer effects have been also been added to OVERFLOW 2

    Countering Active Attacks on RAFT-based IoT Blockchain Networks

    Get PDF
    This paper considers an Internet of Thing (IoT) blockchain network consisting of a leader node and various follower nodes which together implement the RAFT consensus protocol to verify a blockchain transaction, as requested by a blockchain client. Further, two kinds of active attacks, i.e., jamming and impersonation, are considered on the IoT blockchain network due to the presence of multiple {\it active} malicious nodes in the close vicinity. When the IoT network is under the jamming attack, we utilize the stochastic geometry tool to derive the closed-form expressions for the coverage probabilities for both uplink and downlink IoT transmissions. On the other hand, when the IoT network is under the impersonation attack, we propose a novel method that enables a receive IoT node to exploit the pathloss of a transmit IoT node as its fingerprint to implement a binary hypothesis test for transmit node identification. To this end, we also provide the closed-form expressions for the probabilities of false alarm, missed detection and miss-classification. Finally, we present detailed simulation results that indicate the following: i) the coverage probability improves as the jammers' locations move away from the IoT network, ii) the three error probabilities decrease as a function of the link quality

    Gamow-Teller transitions from 24Mg and its impact on the electron capture rates in the O + Ne + Mg cores of stars

    Full text link
    Electron captures on nuclei play an important role in the collapse of stellar core in the stages leading to a type-II supernova. Recent observations of subluminous Type II-P supernovae (e.g. 2005cs, 2003gd, 1999br) were able to rekindle the interest in 8 - 10 which develop O+Ne+Mg cores. We used the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory to calculate the B(GT) strength for 24Mg \rightarrow 24Na and its associated electron capture rates for incorporation in simulation calculations. The calculated rates, in this letter, have differences with the earlier reported shell model and Fuller, Fowler, Newman (hereafter F2N) rates. We compared Gamow-Teller strength distribution functions and found fairly good agreement with experiment and shell model. However, the GT centroid and the total GT strength, which are useful in the calculation of electron capture rates in the core of massive pre-supernova stars, lead to the enhancement of our rate up to a factor of four compared to the shell model rates at high temperatures and densities.Comment: 13 pages, 3 figure

    Channel Impulse Response-based Physical Layer Authentication in a Diffusion-based Molecular Communication System

    Get PDF
    Consider impersonation attack by an active malicious nano node (Eve) on a diffusion based molecular communication (DbMC) system-Eve transmits during the idle slots to deceive the nano receiver (Bob) that she is indeed the legitimate nano transmitter (Alice). To this end, this work exploits the 3-dimensional (3D) channel impulse response (CIR) with L taps as device fingerprint for authentication of the nano transmitter during each slot. Specifically, Bob utilizes the Alice's CIR as ground truth to construct a binary hypothesis test to systematically accept/reject the data received in each slot. Simulation results highlight the great challenge posed by impersonation attack-i.e., it is not possible to simultaneously minimize the two error probabilities. In other words, one needs to tolerate on one error type in order to minimize the other error type

    Modelling the impact of small farm mechanization

    Get PDF

    Hand-breathe: Non-Contact Monitoring of Breathing Abnormalities from Hand Palm

    Full text link
    In post-covid19 world, radio frequency (RF)-based non-contact methods, e.g., software-defined radios (SDR)-based methods have emerged as promising candidates for intelligent remote sensing of human vitals, and could help in containment of contagious viruses like covid19. To this end, this work utilizes the universal software radio peripherals (USRP)-based SDRs along with classical machine learning (ML) methods to design a non-contact method to monitor different breathing abnormalities. Under our proposed method, a subject rests his/her hand on a table in between the transmit and receive antennas, while an orthogonal frequency division multiplexing (OFDM) signal passes through the hand. Subsequently, the receiver extracts the channel frequency response (basically, fine-grained wireless channel state information), and feeds it to various ML algorithms which eventually classify between different breathing abnormalities. Among all classifiers, linear SVM classifier resulted in a maximum accuracy of 88.1\%. To train the ML classifiers in a supervised manner, data was collected by doing real-time experiments on 4 subjects in a lab environment. For label generation purpose, the breathing of the subjects was classified into three classes: normal, fast, and slow breathing. Furthermore, in addition to our proposed method (where only a hand is exposed to RF signals), we also implemented and tested the state-of-the-art method (where full chest is exposed to RF radiation). The performance comparison of the two methods reveals a trade-off, i.e., the accuracy of our proposed method is slightly inferior but our method results in minimal body exposure to RF radiation, compared to the benchmark method
    corecore