2 research outputs found

    Multi-atlas-based attenuation correction for brain \u3csup\u3e18\u3c/sup\u3eF-FDG PET imaging using a time-of-flight PET/MR scanner: Comparison with clinical single-atlas- and CT-based attenuation correction

    No full text
    In this work, we assessed the feasibility of attenuation correction (AC) based on a multi-atlas-based method (m-Atlas) by comparing it with a clinical AC method (single-atlas-based method [s-Atlas]), on a timeof-flight (TOF) PET/MRI scanner. Methods: We enrolled 15 patients. The median patient age was 59 y (age range, 31-80). All patients underwent clinically indicated whole-body 18F-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MRI scan of the head (no additional tracer being injected). For each patient, 3 AC maps were generated. Both s-Atlas and m-Atlas AC maps were generated from the same patient-specific LAVA-Flex T1-weighted images being acquired by default on the PET/MRI scanner during the first 18 s of the PET scan. An s-Atlas AC map was extracted by the PET/MRI scanner, and an m-Atlas AC map was created using a Web service tool that automatically generates m-Atlas pseudo-CT images. For comparison, the AC map generated by PET/CT was registered and used as a gold standard. PET images were reconstructed from raw data on the TOF PET/MRI scanner using each AC map. All PET images were normalized to the SPM5 PET template, and 18F-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative (%diff) and absolute differences (j%diffj) between images based on each atlas AC and CT-AC were calculated. 18F-FDG uptake in all VOIs and generalized merged VOIs were compared using the paired t test and Bland-Altman test. Results: The range of error on m-Atlas in all 1,005 VOIs was-4.99% to 4.09%. The j%diffj on the m-Atlas was improved by about 20% compared with s-Atlas (s-Atlas vs. m-Atlas: 1.49% ± 1.06% vs. 1.21% ± 0.89%, P \u3c 0.01). In generalized VOIs, %diff on m-Atlas in the temporal lobe and cerebellum was significantly smaller (s-Atlas vs. m-Atlas: temporal lobe, 1.49% ± 1.37% vs.-0.37%± 1.41%, P\u3c 0.01; cerebellum, 1.55% ± 1.97%vs.-1.15%± 1.72%, P \u3c 0.01). Conclusion: The errors introduced using either s-Atlas orm-Atlas did not exceed 5% in any brain region investigated. When compared with the clinical s-Atlas, m-Atlas is more accurate, especially in regions close to the skull base

    Low-dose F-18-FDG TOF-PET/MR for accurate quantification of brown adipose tissue in healthy volunteers

    Get PDF
    Background Positron emission tomography (PET) is increasingly applied for in vivo brown adipose tissue (BAT) research in healthy volunteers. To limit the radiation exposure, the injected 18F-FDG tracer dose should be as low as possible. With simultaneous PET/MR imaging, the radiation exposure due to computed tomography (CT) can be avoided, but more importantly, the PET acquisition time can often be increased to match the more extensive magnetic resonance (MR) imaging protocol. The potential gain in detected coincidence counts, due to the longer acquisition time, can then be applied to decrease the injected tracer dose. The aim of this study was to investigate the minimal 18F-FDG dose for a 10-min time-of-flight (TOF) PET/MR acquisition that would still allow accurate quantification of supraclavicular BAT volume and activity. Methods Twenty datasets from 13 volunteers were retrospectively included from a prospective clinical study. PET emission datasets were modified to simulate step-wise reductions of the original 75 MBq injected dose. The resulting PET images were visually and quantitatively assessed and compared to a 4-min reference scan. For the visual assessment, the image quality and artifacts were scored using a 5-point and a 3-point Likert scale. For the quantitative analysis, image noise and artifacts, BAT metabolic activity, BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were investigated. Results The visual assessment showed still good image quality for the 35%, 30%, and 25% activity reconstructions with no artifacts. Quantitatively, the background noise was similar to the reference for the 35% and 30% activity reconstructions and the artifacts started to increase significantly in the 25% and lower activity reconstructions. There was no significant difference in supraclavicular BAT metabolic activity, BMV, and TBG between the reference and the 35% to 20% activity reconstructions. Conclusions This study indicates that when the PET acquisition time is matched to the 10-min MRI protocol, the injected 18F-FDG tracer dose can be reduced to approximately 19 MBq (25%) while maintaining image quality and accurate supraclavicular BAT quantification. This could decrease the effective dose from 1.4 mSv to 0.36 mSv.ISSN:2191-219
    corecore